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Fig. 1. Experimental design framework. 

 

ABSTRACT 
Mixed-reality (MR) technology has been widely used to simulate 
high-risk workplaces in order to minimize safety concerns. However, 
its use in understanding worker attentional allocation during 
interactions with drones in future construction environments remains 
underexplored. This study developed a futuristic bricklaying MR 
environment, where human-drone interaction was mandatory, to 
capture participants’ naturalistic behaviors (i.e., attention, 

productivity, and distraction) across different interaction levels (i.e., 
no interaction, coexistence, and collaboration). The core research 
question explored whether workers maintained situational awareness 
of the drones or were distracted by them. The results confirmed that 
participants experienced a high sense of presence in the MR 
environment, driven by the use of environmental modalities, passive 

haptics, and drones’ sounds and spinning blades. Moreover, the 

findings demonstrated that participants were distracted by the drones 
during coexistence, as evidenced by lower productivity and 
reflections indicating they felt they were over-allocating attention to 
the drones. Conversely, participants exhibited situational awareness 
of the drones during collaboration, deliberately allocating attention 
to ensure safety, despite a reduction in productivity. These findings 
highlight the value of immersive technology in investigating 
workers’ naturalistic behaviors in future construction scenarios 

where workers and robots must function as teammates. 
 
Index Terms: Mixed Reality (MR), worker-drone interaction, 
situational awareness, distraction, future construction.   

1 INTRODUCTION 
As advanced technologies (e.g., artificial intelligence and robots) are 
promising to revolutionize various industries, the potential of 
Unmanned Aerial Vehicles (a.k.a. drones) to improve the construction 
sector has been emphasized by previous studies [1]. In recent research 
reviewing the application of drones in the construction domain, the 
authors summarized monitoring, inspection, and photography as the 
most common examples of drone applications on jobsites [2,3]. While 
drones exhibit the capability to take over some construction tasks, they 
remain insufficiently intelligent to handle all unpredictable situations 
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in construction. This fact sheds light on the necessity of workers’ 

presence on future jobsites to collaborate with drones (i.e., worker-
drone interaction) and complete tasks as a team [4]. Literature has 
categorized the varying roles (e.g., operator, supervisor, collaborator, 
and bystander) that workers will serve during worker-drone 
interaction [5]. The workers' roles in this relationship can be affected 
by their interaction levels with drones (e.g., coexistence and 
collaboration). 

While the incorporation of drones into construction jobsites 
facilitates automation, previous research has highlighted potential 
adverse effects on workers, including safety concerns [6] and 
distraction [7]. Specifically, drones, representing flying robots, might 
collide with workers on dynamic jobsites, so workers must maintain 
situational awareness (SA) to ensure safety [8]. In other words, 
workers need to properly allocate their limited attentional resources to 
drones while executing their primary tasks [9]. On the other hand, 
being an unfamiliar entity to the workers, drones might distract and 
divert their attention. Although both SA and distraction depend on 
attentional allocation, the key difference is that SA is considered 
positive, while distraction is viewed as unfavorable. Distinguishing 
between these two attention-related situations remains understudied.  

To address this gap, the study developed a mixed-reality (MR) 
environment simulating future construction sites - Fig. 1, capturing 
workers' naturalistic behaviors during worker-drone interactions. The 
key contribution of this study lies in its ability to differentiate between 
situational awareness and distraction in a real-world-inspired setting, 
providing valuable insights into optimizing worker safety in drone-
integrated jobsites. 

2 BACKGROUND  

2.1 Situational Awareness (SA) Vs. Distraction 

The importance of SA has been accentuated in such dynamic 
workplaces as construction sites to guarantee occupational safety [10]. 
The broadly adopted definition of SA was the perception of dynamic 
elements, the comprehension of their meaning, and the projection of 
their status in the future [11]. Workers’ high SA of dynamic hazards 

on jobsites enables their accurate assessment of the current situation 
and their rapid decision-making, leading to construction safety [12]. 
Moreover, the relationship between SA and attention has been 
established because attention refers to an essential element for human 
information processing [10]. That is, human attentional allocation 
implies the information that is being sensed, perceived, and interpreted 
[13]. Maintaining SA of dynamic objects necessitates attentional 
resources allocated to those objects. Therefore, workers’ attentional 

allocation to drones might result from their intention to maintain SA 
of drones. 

The measurements of SA assessment can be categorized into 
subjective and objective approaches. Subjective approaches typically 
rely on self-reported methods, such as questionnaires or interviews, 
where participants provide their perception of SA. The broadly used 
methods include Situation Awareness Global Assessment Technique 
(SAGAT) [14], Situation Awareness Rating Technique (SART) [15], 
and NASA Task Load Index (NASA-TLX) [16]. SAGAT involves 
pausing tasks to ask participants specific questions about the situation, 
while SART uses self-rating scales to evaluate an individual's 
perceived SA across demand, supply, and understanding dimensions. 
NASA-TLX measures mental workload, which is often linked to SA 
in complex tasks. All these three methods have been applied to 
understand users’ SA performance in applications of immersive 
technology [17,18]. 

On the contrary, objective approaches assess situational awareness 
by analyzing measurable behavioral or physiological indicators, often 
focusing on attention-related metrics. These include eye-tracking 
measures such as dwell time [8], run count [19], and saccade patterns 
[9], which provide insights into how users allocate their attention in 

dynamic environments. Compared to subjective approaches, objective 
measurements exhibit the ability to capture users’ real-time 
performance during experiments without any interruptions. As 
multiple commercially available head mount devices (HMD) have 
built-in eye-trackers, these objective approaches become prevalent in 
immersive environments.  

On the other hand, distraction occurs when attention is diverted 
from primary tasks due to external stimuli or internal thoughts that 
compete for cognitive resources [20]. In dynamic workspaces, 
distraction can compromise productivity, increase human errors, and 
pose safety concerns[21,22]. Unlike focused attention, which 
enhances performance, distractions might interrupt information 
processing and undermine decision-making [23]. Understanding the 
sources of distraction on construction sites is critical for minimizing 
interruptions and facilitating workers’ sustained attention on primary 

tasks. Moreover, previous literature suggests that workers could be 
visually, auditorily, and cognitively distracted by drones on future 
jobsites [7], supporting that drones should be considered a latent 
source of distraction.  

Although SA and distraction are associated with attentional 
allocation, the main difference between them lies in three 
perspectives: (i) productivity, (ii) intention, and (iii) risk levels. First, 
while distraction typically compromises human productivity, the 
effect of SA on productivity might be neutral or even positive [24], 
[25]. Second, SA refers to an intentional behavior focusing on 
dynamic elements to ensure safety, whereas distraction can be 
regarded as an intentional or unintentional behavior [26]. Third, the 
risk level associated with interacting with drones is a key criterion for 
differentiating SA from distraction. If the risk is high, attentional 
allocation to drones is necessary and represents SA. Conversely, if the 
risk is low, such attentional allocation is unnecessary and can be 
considered a distraction. Therefore, these three perspectives were 
involved in this study to make the discussion comprehensive. 

2.2 Immersive Technology Applications in Construction 

As construction is one of the most hazardous workplaces, 
immersive technology, especially virtual reality (VR), provides 
researchers and practitioners with a platform to observe workers’ 

naturalistic behaviors and responses without compromising their 
safety. A recent review categorized the majority of immersive 
technology applications in construction into three groups: (i) hazard 
identification, (ii) safety training and education, and (iii) safety 
inspection and instruction [27]. Specifically, the first group of research 
refers to developing an immersive construction site to capture 
workers’ realistic hazard identification behaviors [28,29]. In addition, 
the use of immersive technology for training has been recognized as 
an effective method to enhance the cognitive learning of workers and 
to offer them an opportunity to learn from an experienced professional 
through virtual cues [30,31]. Augmented reality (AR) devices have 
been also utilized to inspect the alignment between drawings and the 
built construction on physical jobsites [32,33]. Recently, immersive 
technology has been increasingly applied to understand how workers 
will interact with robotic partners in future construction [4,34]. As 
future construction sites do not yet exist, it is impossible to study them 
directly. Immersive technology offers a practical solution by creating 
realistic simulations that enable researchers to explore worker-robot 
interaction. 

2.3 Human-Drone Interaction Levels 

While the risks of human-drone interaction are crucial in 
determining SA and distraction, previous studies have shown that 
these risks are directly influenced by interaction levels (e.g., 
coexistence and collaboration), as each level involves specific patterns 
of interaction between humans and drones [35,36]. Specifically, 
coexistence refers to a scenario where humans and drones maintain a 
shared workplace without a shared goal [37]leading to limited-to-no 
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direct communication between humans and drones. Worker-drone 
coexistence in construction is often represented by the cases of on-site 
safety inspection and monitoring [38]. Collaboration denotes 
scenarios wherein humans and drones simultaneously work on a 
shared object, toward a shared goal, and in a shared space, and the 
action executed by any of the agents has immediate consequences on 
the other entity [39]. Worker-drone collaboration in construction has 
been commonly found in material delivery and installation tasks 
[2,40,41]. Compared to drones merely flying around jobsites without 
sharing workspace with workers, human-drone coexistence may pose 
a higher risk, with human-drone collaboration posing the highest risk, 
as workers must be close to drones to share an object. The risks would 
justify whether workers’ attentional allocation to drones across 
different interaction levels is necessary. 

3 POINT OF DEPARTURE 
While drones have been recognized as potential robotic teammates 

to be incorporated into jobsites and revolutionize the construction 
industry, their presence will impose extra uncertainties on workers in 
future construction, including risks and distractions. While the 
concept of robot/no-robot and its impacts on human SA and 
productivity have been explored in the literature, the nature of human-
drone interaction—ranging from no interaction to coexistence and 
collaboration—significantly determines how workers share 
workspaces with drones, and primarily remained understudied. The 
degree of workspace sharing directly influences the risks associated 
with each interaction level. Fig. 2 presents a graphical overview of the 
relationship between interaction levels and risks. Given that drones 
should be perceived as a hazard due to their latent collision with 
humans, workers must continuously perceive drones’ risks and 

maintain their SA of drones, ensuring their safety on jobsites. 
Conversely, drones can act as distractions due to their physical 
presence, spinning blades, and noise, diverting workers’ attention 

from primary tasks and potentially compromising productivity. Given 
that both SA and distraction stem from attentional allocation, this 
raises a question: Across different levels of interaction, are workers 
maintaining situational awareness of drones, or are they being 
distracted by them? 

This study addresses the research question by utilizing mixed 
reality (MR) technology to simulate future construction job sites 
where drones are integrated. The MR environment immerses workers 
in a projected but realistic job site, allowing them to interact with 
drones in scenarios that closely resemble real-world conditions. The 
use of a simulated MR environment is essential for several reasons: 
First, construction is a safety-critical environment, and conducting an 
experiment on an actual jobsite would expose workers to unnecessary 
risks, potentially endangering their lives. Alternatively, the MR 
environment provides a controlled and realistic environment where 
naturalistic worker behaviors can be observed without compromising 
safety. Second, this study mainly discussed the future construction 
where the presence of drones will be prevalent, and MR offers a 
platform to accurately simulate this future landscape. Third, by 
leveraging the authenticity of MR, workers' perception of drone risks 
across different interaction levels, attention allocation, productivity, 
and subjective distraction assessment can be realistically captured. 

To answer the above research question, this study examines the 
following hypotheses to assess participants’ sense of presence in MR 
environments and its applicability for studying their naturalistic 
behaviors within different worker-drone interaction levels: 

H1: The developed MR environment with passive haptics and 
drone-related features (i.e., actual dimension, spinning blades, and 
sounds) strengthens workers’ sense of presence and interaction with 
drones, ensuring their correct risk perception of drones. 

H2: Varying levels of interaction with drones significantly 
influences risk perception, attentional allocation, productivity, and 

subjective assessment of distraction, leveraging the heightened 
presence to capture workers’ realistic metrics. 

The MR approach ensures that the study's findings are grounded 
in realistic scenarios, making them more applicable to future jobsite 
environments. The findings of this study aim to offer insights into 
distinguishing distraction from SA across different levels of worker-
drone interaction. 

 

 
Fig. 2. Schematic representation of risks associated with worker-

drone varying interaction levels. 

4 METHODOLOGY 

4.1 Experimental Design 
To simulate worker-drone interaction in future construction, an 

MR bricklaying experiment in which workers were asked to team up 
with drones at different interaction levels was developed, as illustrated 
in Fig. 1. In the simulated experiment, workers completed a 7-min 
bricklaying task with MULE, which is a real-world bricklaying robot, 
while interacting with inspection and delivery drones, with these 
drones representing human-drone coexistence and collaboration, 
respectively. The MULE was designed to mitigate workers’ physical 

burden by automatically lifting/dropping heavy concrete blocks while 
workers manually applied mortar and moved MULE to the correct 
positions. The sequential procedure that participants followed to 
complete the bricklaying involved manually applying mortar, moving 
the MULE to lift a block, and then placing the block onto the brick 
wall. These procedures must be repeated until the end of the 
experiment. The selection of this bricklaying task in this study stems 
from its representativeness of other construction activities that, 
traditionally, entail workers’ physical effort, but the physical burden 

can be relieved from workers by incorporating robots, such as drywall 
panel installation [42]. 

In the simulated context, the inspection drone coexisted with 
workers by hovering overhead and following workers to examine the 
environment and the workers’ progress for one minute. The 
coexistence nature of this interaction lay in the fact that workers only 
shared a workplace with the inspection drone without any shared goal 
or object. On the other hand, the delivery drone collaborated with 
workers by delivering a new mortar bucket to the workers on a 
scaffold when the old mortar bucket was empty. During the interaction 
with the delivery drone, the participants had to be in close proximity 
to the drone and pick up the new mortar bucket to continue the 
bricklaying task. Participants were given one minute to finish picking 
and returning the bucket. Thus, this collaborative relationship was 
built on the shared workplace, goal, and object between the workers 
and the delivery drone.  

It is worth noting that, apart from the inspection and delivery 
drones, there were other irrelevant drones flying around the 
construction sites without any interaction with participants. All the 
drone-related interaction behaviors and flight paths were pre-defined 
and implemented to control all participants experiencing identical 
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interactions with drones. Therefore, this study considered three 
interaction levels: no interaction (i.e., the drones on the background 
without any interaction with workers), coexistence (i.e., interaction 
with the inspection drone), and collaboration (i.e., the interaction with 
the delivery drone).  

To promote realism of the MR environment, the simulated 
construction workplaces involved not only bricklaying-related objects 
(e.g., concrete blocks, shovels, and mortar buckets) but also various 
dynamic construction machinery (e.g., excavators), materials (e.g., 
rebar and concrete), and co-workers who were executing different 
tasks to represent the dynamic nature of construction jobsites, 
heightening the sense of presence. Additionally, the MR model was 
enhanced with environmental modalities (i.e., construction 
background sounds and wind simulated by a fan) and passive haptics 
(i.e., physical guardrail of a scaffold) to enhance participants’ sense of 

presence. To increase the sense of presence of the simulated drones, 
the developed scenario included spinning blades and increasing drone 
sounds as they approached. 

4.2 Participants 

This study recruited 105 healthy participants (71 males and 34 
females) who were aged from 18 to 36 years (Mean= 22.857, STD= 
3.404). All the subjects were current students with construction work 
experience at Purdue University, representing the next generation of 
workforce in construction. Having such work experience would 
ensure their understanding of the responsibility for being a 
construction worker. However, none of them possessed drone 
experience within construction based on their self-report. A lack of 
experience with drones would reflect the actual situation where drones 
or other technologies are just introduced to jobsites. 

4.3 Experimental Procedure 

The experiment was initialized with participants signing a consent 
form and filling out a demographic pre-survey. Subjects were 
provided with a 10-minute training to familiarize themselves with the 
bricklaying task and the functionalities of each drone. Then, 
participants were equipped with a VR HMD with a built-in eye 
tracker, two hand controllers, three motion trackers, a medical 
wristband, and a functional near-infrared spectroscopy (fNIRS) cap. 

 Thereafter, they completed the 7-min bricklaying experiment, 
experiencing both the coexistence and collaboration interaction 
conditions with drones once, while the order of two conditions was 
counterbalanced to prevent order bias in within-subject analyses. As 
the no-interaction condition represented drones flying around the 
construction site, durations without interaction with drones were 
considered part of this condition. Finally, a post-survey was conducted 
to understand their sense of presence and subjective distraction 
assessment. The entire experiment approximately took one hour, and 
a $40 Amazon gift card was offered as compensation for completing 
the experiment. All the procedures were approved by the Purdue 
Institutional Review Board (IRB). 

4.4 Apparatus 

HTC Vive Pro Eye (manufactured by HTC Corporation, Taoyuan, 
Taiwan) was selected to present the developed bricklaying 
experiment. It has a built-in Tobii eye-tracker with a refresh rate of 90 
Hz and a 110o field of view. The MR environment was developed in 
Unity, and the experiment was run on an Alienware PC with an AMD 
Ryzen 9 5950X 16-Core processor and an NVIDIA GeForce RTX 
3090 graphics card. Furthermore, the Empatica E4 wristband 
(manufactured by Empatica, Boston, United States) was deployed to 
collect real-time physiological data (e.g., electrodermal activity 
(EDA)), and a fNIRS cap (Brite 23, Artinis, Netherlands) was used to 
capture human brain activation. Due to the page limit and scope of this 
paper, we mainly discuss eye-tracking findings and distraction-related 
reporting.  

4.5 Performance Metrics and Statistical Tests 

4.5.1 Sense of Presence 
This study developed a MR environment to simulate the futuristic 

bricklaying task where workers needed to interact with drones at 
different levels. Since workers' naturalistic behaviors and responses 
are crucial for the analyses, ensuring their high sense of presence in 
the MR environment is essential. Therefore, this study examined the 
sense of presence of the MR environment from two perspectives: 
Place Illustion (PI) and Plausibility Illusion (Psi). PI refers to the 
sense of being in a place that is not the physical location of the user. 
In the developed MR environment, participants should feel as if they 
are working on an elevated scaffold rather than in an office. On the 
other hand, Psi represents the extent to which the events, interactions, 
and objects within the environment are believable and consistent with 
the users’ expectation based on real-world experiences. In this 
experiment, participants should experience their interactions with 
drones as realistically as they would in an actual construction site. By 
ensuring both PI and Psi perspectives, the MR environment aims to 
foster realistic immersion, and to make it suitable for studying worker 
behaviors in drone-integrated jobsites. 

In the 7-point Likert post-survey, participants were asked to 
subjectively report their sense of presence by answering four main 
questions, as shown in Fig. 3. The first two questions addressed the 
evaluation of PI in the MR environment, while the other question 
focused on Psi. 

4.5.2 Attentional Allocation 
The participants’ visual attention toward each area of interest (AOI) 

(i.e., different drones) was monitored to calculate two commonly used 
eye-tracking metrics: dwell time and run count. Dwell time represents 
the total time a subject fixated on an AOI, while run count denotes the 
number of times a subject returned their attention to each AOI. 
Specifically, this study utilized dwell time percentage (i.e., dwell 
time/total duration of each condition) and run count per second (i.e., 
run count/total duration of each condition). This processing mitigated 
the bias resulting from the varying duration of different conditions. 

4.5.3 Bricklaying Productivity 
In the developed MR experiment, while participants might 

maintain their SA of drones or be distracted by drones, the bricklaying 
task represented the primary task that they should concentrate on. 
More importantly, the productivity of the primary task is a key 
indicator that provides insights into whether workers are being 
distracted. Consequently, the bricklaying productivity rate (i.e., the 
number of blocks laid by participants per second) across three 
different interaction levels was calculated to mitigate the impact of 
varying durations. 

4.5.4 Distraction 
In addition to productivity, workers' subjective distraction 

assessments provided insights into how they memorized and 
perceived their distraction-related behaviors at different interaction 
levels. As introduced, this study considered recall (i.e., the extent to 
which subjects exhibited any distraction-related behaviors, such as 
looking at drones) and reflection (i.e., the extent to which participants 
felt it was necessary to exhibit distraction-related behaviors, such as 
looking at drones) into the distraction assessment in a 5-point Likert 
scale. The distraction questionnaire was developed by a well-cited 
study [43]. 

4.5.5 Statistical Tests 
Apart from descriptive analyses, this study executed multiple 

repeated measure analysis of variance (RMANOVA) to conduct 
within-subject analyses by comparing the difference in attentional 
allocation, productivity, and distraction across three levels of human-
drone interactions. This approach ensures that individual differences  
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Fig. 3. Participants’ sense of presence. 

are controlled, allowing for a more precise analysis of the effects of 
the interaction conditions on the measured variables. 

5 RESULTS 

5.1 Sense of Presence in MR Environment 
Participants’ high sense of presence in this MR environment can 

be verified by the high PI (Q1: Mean ± STD = 6.114 ± 0.993, Median 
= 6.0; Q2: Mean ± STD = 5.943 ± 1.082, Median = 6.0) and Psi (Q3: 
Mean ± STD = 5.800 ± 1.369, Median = 6.0; Q4: Mean ± STD = 5.974 
± 1.411, Median = 7.0) values, supporting the first hypothesis (H1). 
Fig.3 illustrates the distribution of participants’ responses to 

individual questions. The results provided a reliable foundation, 
showing that the MR environment accurately reflected future 
construction sites and that the collected data captured workers' 
naturalistic behaviors during their interactions with drones. 

 

5.2 Worker Attentional Allocation across Different 
Interaction Levels 

This study considered two eye-tracking metrics (i.e., dwell time 
percentage and run count per second) to understand how participants 
allocated their attentional resources on drones across different 
interaction levels. Fig. 4a shows a graphical overview of the 
relationship between dwell time percentage and three interaction 
levels: no interaction (Mean ± STD = 0.461 ± 0.803), coexistence 
(Mean ± STD = 4.864 ± 7.087), and collaboration (Mean ± STD = 
7.675 ± 6.175). The results from ANOVA analysis showed that the 
impact of interaction levels on dwell time percentage was significant 
(F(2,312)=46.777, p=0.000<0.05, η2=0.403). The post-hoc Turkey 
tests confirmed the significant difference between each pair of 
interaction levels: (i) no interaction vs. coexistence (t(312)= 5.856, p= 
0.000<0.05, d= 5.113), (ii) no interaction vs. collaboration (t(312)= 
9.595, p= 0.000<0.05, d= 1.637), and (iii) coexistence vs. 
collaboration (t(312)= 3.739, p= 0.000<0.05, d= 0.637).  

 
 
 
 
 
 
 
 
 

 

 
(a) 

 
(b) 

Fig. 4. Changes in worker attentional allocation toward drones 
across three Interaction Levels. (** p<0.05) 

Moreover, Fig. 4b presents how subjects’ run count per second 

varied according to the conditions of no interaction (Mean ± STD = 
0.014 ± 0.018), coexistence (Mean ± STD = 0.067 ± 0.059), and 
collaboration (Mean ± STD = 0.343 ± 0.220). The ANOVA test 
indicated a significant effect of interaction levels on run count 
(F(2,312)= 188.351, p= 0.000<0.05, η2=0.522). Similarly, the post-
hoc analyses showed the significant difference between each pair of 
interaction levels: (i) no interaction vs. coexistence (t(312)= 2.909, p= 
0.011<0.05, d= 0.735), (ii) no interaction vs. collaboration (t(312)= 
18.073, p= 0.000<0.05, d= 2.081), and (iii) coexistence vs. 
collaboration (t(312)= 15.164, p= 0.000<0.05, d= 1.646). The findings 
supported the second hypothesis (H2). 
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5.3 Worker Productivity across Different Interaction 
Levels 

As highlighted, productivity is critical in identifying human 
distraction at work. Therefore, subjects’ bricklaying productivity rates 
across different interaction levels were recorded, including no 
interaction (Mean ± STD = 3.246 ± 1.020), coexistence (Mean ± STD 
= 2.805 ± 1.032), and collaboration (Mean ± STD = 2.258 ± 1.292), 
Fig. 5. The outcome of the ANOVA test revealed that interaction 
levels significantly influenced workers’ productivity rate (F(2,312)= 
20.449, p=0.000<0.05, η2=0.103). Additionally, the post-hoc analyses 
demonstrated the significant difference between each pair of 
interaction levels: (i) no interaction vs. coexistence (t(312)= 2.849, p= 
0.013<0.05, d= 0.377), (ii) no interaction vs. collaboration (t(312)= 
6.383, p= 0.000<0.05, d= 0.862), and (iii) coexistence vs. 
collaboration (t(312)= 3.534, p= 0.001<0.05, d= 0.430). These 
outcomes aligned with the second hypothesis (H2). 

 

 
Fig. 5. Changes in worker productivity across three levels of 

interaction with drones. (** p<0.05) 

5.4 Worker Subjective Distraction Assessment across 
Different Interaction Levels 

Fig. 6 presents a graphical overview of these two metrics across 
different interaction levels. Specifically, participants’ recall scores 

were low, medium, and high under the conditions of no interaction 
(Mean ± STD = 2.305 ± 1.194, Median = 2.0), coexistence (Mean ± 
STD = 2.800 ± 1.577, Median = 2.0), and collaboration (Mean ± STD 
= 3.533 ± 1.442, Median = 4.0), respectively. This result aligned with 
the findings derived from eye-tracking metrics (i.e., dwell time and 
run count). 
 

 
Fig. 6. Changes in worker distraction recall and their reflections on 

necessity of allocating attention toward drones at three interaction 
levels. 

On the other hand, regarding the reflection, a similar trend was 
observed, where participants exhibited low scores under no interaction 
(Mean ± STD = 1.952 ± 1.086, Median = 2.0) and medium scores 
under coexistence (Mean ± STD = 2.257 ± 1.101, Median = 2.0). Their 
high score was identified at the collaboration level (Mean ± STD = 
3.771 ± 1.288, Median = 4.0). It is worth highlighting that the 
comparisons between the recall and reflection scores indicated 

dissimilar patterns across different interaction levels. Overall, 
participants felt that the number of distraction-related behaviors they 
exhibited was unnecessary under the no interaction and coexistence 
levels. By contrast, they felt it was vital to maintain their situational 
awareness by checking the drone status frequently at the collaboration 
level. These findings confirmed the second hypothesis (H2). 

 

6 DISCUSSION 
Although drones display huge potential to improve construction 

efficiency and automation, previous studies have already mentioned 
that drones could become a hazard (i.e., workers should maintain SA) 
or a distractor for workers [7]. However, given that SA and distraction 
relate to visual attention, it remains unknown whether workers are 
situationally aware of drones, which is a positive statement, or 
distracted by drones, which is a negative statement. Therefore, this 
study aims to address this issue by developing MR environment to 
capture workers’ naturalistic behaviors across different levels of 

interaction with drones. Based on participants’ self-report in the post-
experiment interview, the passive haptics (i.e., physical guardrails) 
and environmental modality (i.e., wind and construction sound) 
facilitated their high sense of presence in the MR environment. 
Moreover, the manipulated visual (i.e., spinning blades) and auditory 
(i.e., drone sound) aspects of drones enhanced participants’ perception 

of interacting with real drones. This finding was consistent with a 
recent study investigating whether drones trigger user stress and 
discomfort [44]. The authors corroborated that the ecological validity 
of the virtual environment was strengthened by adding spinning blades 
and unpleasant drone sound. To summarize, participants' high sense 
of presence in the MR environment ensured that their risk perception 
of drones at different interaction levels was realistic and as expected 
(see Fig. 2). 

Given that participants’ high sense of presence and interaction has 
been validated by their self-report, it is reliably anticipated that they 
should perceive the risk levels of no interaction, coexistence, and 
collaboration as low, medium, and high. The discussion would 
consider the condition of no interaction as a baseline to evaluate 
whether workers were situationally aware of drones or distracted by 
drones. Regarding attention, the results derived from eye-tracking 
metrics indicated that participants allocated significantly more 
attentional resources to drones in coexistence and collaboration. This 
finding confirms our premise that human-drone interaction captures 
worker attention, regardless of whether it stems from SA or distraction 
[45,46], necessitating the consideration of other performance metrics. 

During worker-drone coexistence, the analysis shows that workers 
exhibited significantly lower productivity than their counterparts for 
no interaction. This phenomenon suggests the possibility of workers 
being distracted by drones; however, as previously mentioned, 
assessing their intention is also important in drawing a conclusion. 
Based on participants’ subjective distraction assessment, they felt the 
number of distraction-related behaviors under coexistence was 
unnecessary. This reflection challenges the notion that workers 
intentionally focus on the drones during coexistence, instead 
indicating that their attention is being diverted involuntarily by the 
drones, leading to distraction. 

Further, workers’ significantly lower productivity was found 
during human-drone collaboration, indicating the possibility of 
distraction. Nevertheless, the subjective distraction assessment 
reflects that the participants felt it was necessary to allocate more 
attention to the drones. This reflection supports participants 
intentionally allocated attention and maintained situational awareness 
of drones during collaboration, which, in turn, impacted their 
productivity. 

Although this research has exhibited considerable contribution to 
the body of knowledge and practice, there remain some limitations 
worth noting. First, this study recruited current students who represent 
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the next generation of the workforce in the experiment; however, more 
experienced workers can also be recruited to replicate this study. 
Second, apart from attentional allocation, other human 
psychophysiological responses can be included in the analysis to 
explore different aspects (e.g., cognition and stress) of SA and 
distraction. Third, while this study included larger number of male 
participants compared to female ones, reflecting the current male-
dominated demographic in the construction industry, it is worth 
examining the potential impact of gender on workers’ behaviors 

during human-robot interactions. Fourth, this study concentrates on 
the situation where workers remain unfamiliar with robotic 
technologies at the beginning, while how the findings will be changed 
by their long-term exposure must be addressed. 

7 CONCLUSIONS  

This research conducted a user study examining the potential of 
deploying the MR environment to understand whether workers were 
situationally aware of drones or distracted by drones across different 
interaction levels. This potential has been validated by participants’ 

self-report of their high sense of presence in the MR environment and 
of interaction with drones, providing a reliable platform to capture 
workers’ naturalistic behaviors across different levels of human-drone 
interaction in future construction. Moreover, the findings illustrated 
that workers were distracted by drones during coexistence according 
to their decreasing productivity and subjective distraction assessment. 
However, workers were more situationally aware of drones during 
collaboration, supported by their intention to allocate attention to 
drones. To summarize, this study contributed to (i) verifying the 
robustness of the MR environment in simulating human-drone 
interaction on future jobsites, and (ii) distinguishing situational 
awareness and distraction based on multidimensional performance 
metrics across different interaction levels. Further, this MR approach 
ensures that the study’s findings are grounded in realistic scenarios, 

making them more applicable to future jobsites. 
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