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Fig. 1. Experimental design framework.

ABSTRACT

Mixed-reality (MR) technology has been widely used to simulate
high-risk workplaces in order to minimize safety concerns. However,
its use in understanding worker attentional allocation during
interactions with drones in future construction environments remains
underexplored. This study developed a futuristic bricklaying MR
environment, where human-drone interaction was mandatory, to
capture participants’ naturalistic behaviors (i.e., attention,
productivity, and distraction) across different interaction levels (i.e.,
no interaction, coexistence, and collaboration). The core research
question explored whether workers maintained situational awareness
of the drones or were distracted by them. The results confirmed that
participants experienced a high sense of presence in the MR
environment, driven by the use of environmental modalities, passive
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haptics, and drones’ sounds and spinning blades. Moreover, the
findings demonstrated that participants were distracted by the drones
during coexistence, as evidenced by lower productivity and
reflections indicating they felt they were over-allocating attention to
the drones. Conversely, participants exhibited situational awareness
of the drones during collaboration, deliberately allocating attention
to ensure safety, despite a reduction in productivity. These findings
highlight the value of immersive technology in investigating
workers’ naturalistic behaviors in future construction scenarios
where workers and robots must function as teammates.

Index Terms: Mixed Reality (MR), worker-drone interaction,
situational awareness, distraction, future construction.

1 INTRODUCTION

As advanced technologies (e.g., artificial intelligence and robots) are
promising to revolutionize various industries, the potential of
Unmanned Aerial Vehicles (a.k.a. drones) to improve the construction
sector has been emphasized by previous studies [1]. In recent research
reviewing the application of drones in the construction domain, the
authors summarized monitoring, inspection, and photography as the
most common examples of drone applications on jobsites [2,3]. While
drones exhibit the capability to take over some construction tasks, they
remain insufficiently intelligent to handle all unpredictable situations
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in construction. This fact sheds light on the necessity of workers’
presence on future jobsites to collaborate with drones (i.e., worker-
drone interaction) and complete tasks as a team [4]. Literature has
categorized the varying roles (e.g., operator, supervisor, collaborator,
and bystander) that workers will serve during worker-drone
interaction [5]. The workers' roles in this relationship can be affected
by their interaction levels with drones (e.g., coexistence and
collaboration).

While the incorporation of drones into construction jobsites
facilitates automation, previous research has highlighted potential
adverse effects on workers, including safety concerns [6] and
distraction [7]. Specifically, drones, representing flying robots, might
collide with workers on dynamic jobsites, so workers must maintain
situational awareness (SA) to ensure safety [8]. In other words,
workers need to properly allocate their limited attentional resources to
drones while executing their primary tasks [9]. On the other hand,
being an unfamiliar entity to the workers, drones might distract and
divert their attention. Although both SA and distraction depend on
attentional allocation, the key difference is that SA is considered
positive, while distraction is viewed as unfavorable. Distinguishing
between these two attention-related situations remains understudied.

To address this gap, the study developed a mixed-reality (MR)
environment simulating future construction sites - Fig. 1, capturing
workers' naturalistic behaviors during worker-drone interactions. The
key contribution of this study lies in its ability to differentiate between
situational awareness and distraction in a real-world-inspired setting,
providing valuable insights into optimizing worker safety in drone-
integrated jobsites.

2 BACKGROUND

21 Situational Awareness (SA) Vs. Distraction

The importance of SA has been accentuated in such dynamic
workplaces as construction sites to guarantee occupational safety [10].
The broadly adopted definition of SA was the perception of dynamic
elements, the comprehension of their meaning, and the projection of
their status in the future [11]. Workers” high SA of dynamic hazards
on jobsites enables their accurate assessment of the current situation
and their rapid decision-making, leading to construction safety [12].
Moreover, the relationship between SA and attention has been
established because attention refers to an essential element for human
information processing [10]. That is, human attentional allocation
implies the information that is being sensed, perceived, and interpreted
[13]. Maintaining SA of dynamic objects necessitates attentional
resources allocated to those objects. Therefore, workers’ attentional
allocation to drones might result from their intention to maintain SA
of drones.

The measurements of SA assessment can be categorized into
subjective and objective approaches. Subjective approaches typically
rely on self-reported methods, such as questionnaires or interviews,
where participants provide their perception of SA. The broadly used
methods include Situation Awareness Global Assessment Technique
(SAGAT) [14], Situation Awareness Rating Technique (SART) [15],
and NASA Task Load Index (NASA-TLX) [16]. SAGAT involves
pausing tasks to ask participants specific questions about the situation,
while SART uses self-rating scales to evaluate an individual's
perceived SA across demand, supply, and understanding dimensions.
NASA-TLX measures mental workload, which is often linked to SA
in complex tasks. All these three methods have been applied to
understand users’ SA performance in applications of immersive
technology [17,18].

On the contrary, objective approaches assess situational awareness
by analyzing measurable behavioral or physiological indicators, often
focusing on attention-related metrics. These include eye-tracking
measures such as dwell time [8], run count [19], and saccade patterns
[9], which provide insights into how users allocate their attention in
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dynamic environments. Compared to subjective approaches, objective
measurements exhibit the ability to capture users’ real-time
performance during experiments without any interruptions. As
multiple commercially available head mount devices (HMD) have
built-in eye-trackers, these objective approaches become prevalent in
immersive environments.

On the other hand, distraction occurs when attention is diverted
from primary tasks due to external stimuli or internal thoughts that
compete for cognitive resources [20]. In dynamic workspaces,
distraction can compromise productivity, increase human errors, and
pose safety concerns[21,22]. Unlike focused attention, which
enhances performance, distractions might interrupt information
processing and undermine decision-making [23]. Understanding the
sources of distraction on construction sites is critical for minimizing
interruptions and facilitating workers’ sustained attention on primary
tasks. Moreover, previous literature suggests that workers could be
visually, auditorily, and cognitively distracted by drones on future
jobsites [7], supporting that drones should be considered a latent
source of distraction.

Although SA and distraction are associated with attentional
allocation, the main difference between them lies in three
perspectives: (i) productivity, (ii) intention, and (iii) risk levels. First,
while distraction typically compromises human productivity, the
effect of SA on productivity might be neutral or even positive [24],
[25]. Second, SA refers to an intentional behavior focusing on
dynamic elements to ensure safety, whereas distraction can be
regarded as an intentional or unintentional behavior [26]. Third, the
risk level associated with interacting with drones is a key criterion for
differentiating SA from distraction. If the risk is high, attentional
allocation to drones is necessary and represents SA. Conversely, if the
risk is low, such attentional allocation is unnecessary and can be
considered a distraction. Therefore, these three perspectives were
involved in this study to make the discussion comprehensive.

2.2 Immersive Technology Applications in Construction

As construction is one of the most hazardous workplaces,
immersive technology, especially virtual reality (VR), provides
researchers and practitioners with a platform to observe workers’
naturalistic behaviors and responses without compromising their
safety. A recent review categorized the majority of immersive
technology applications in construction into three groups: (i) hazard
identification, (ii) safety training and education, and (iii) safety
inspection and instruction [27]. Specifically, the first group of research
refers to developing an immersive construction site to capture
workers’ realistic hazard identification behaviors [28,29]. In addition,
the use of immersive technology for training has been recognized as
an effective method to enhance the cognitive learning of workers and
to offer them an opportunity to learn from an experienced professional
through virtual cues [30,31]. Augmented reality (AR) devices have
been also utilized to inspect the alignment between drawings and the
built construction on physical jobsites [32,33]. Recently, immersive
technology has been increasingly applied to understand how workers
will interact with robotic partners in future construction [4,34]. As
future construction sites do not yet exist, it is impossible to study them
directly. Immersive technology offers a practical solution by creating
realistic simulations that enable researchers to explore worker-robot
interaction.

2.3 Human-Drone Interaction Levels

While the risks of human-drone interaction are crucial in
determining SA and distraction, previous studies have shown that
these risks are directly influenced by interaction levels (e.g.,
coexistence and collaboration), as each level involves specific patterns
of interaction between humans and drones [35,36]. Specifically,
coexistence refers to a scenario where humans and drones maintain a
shared workplace without a shared goal [37]leading to limited-to-no
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direct communication between humans and drones. Worker-drone
coexistence in construction is often represented by the cases of on-site
safety inspection and monitoring [38]. Collaboration denotes
scenarios wherein humans and drones simultaneously work on a
shared object, toward a shared goal, and in a shared space, and the
action executed by any of the agents has immediate consequences on
the other entity [39]. Worker-drone collaboration in construction has
been commonly found in material delivery and installation tasks
[2,40,41]. Compared to drones merely flying around jobsites without
sharing workspace with workers, human-drone coexistence may pose
a higher risk, with human-drone collaboration posing the highest risk,
as workers must be close to drones to share an object. The risks would
justify whether workers’ attentional allocation to drones across
different interaction levels is necessary.

3 POINT OF DEPARTURE

While drones have been recognized as potential robotic teammates
to be incorporated into jobsites and revolutionize the construction
industry, their presence will impose extra uncertainties on workers in
future construction, including risks and distractions. While the
concept of robot/mo-robot and its impacts on human SA and
productivity have been explored in the literature, the nature of human-
drone interaction—ranging from no interaction to coexistence and
collaboration—significantly ~— determines how  workers share
workspaces with drones, and primarily remained understudied. The
degree of workspace sharing directly influences the risks associated
with each interaction level. Fig. 2 presents a graphical overview of the
relationship between interaction levels and risks. Given that drones
should be perceived as a hazard due to their latent collision with
humans, workers must continuously perceive drones’ risks and
maintain their SA of drones, ensuring their safety on jobsites.
Conversely, drones can act as distractions due to their physical
presence, spinning blades, and noise, diverting workers’ attention
from primary tasks and potentially compromising productivity. Given
that both SA and distraction stem from attentional allocation, this
raises a question: Across different levels of interaction, are workers
maintaining situational awareness of drones, or are they being
distracted by them?

This study addresses the research question by utilizing mixed
reality (MR) technology to simulate future construction job sites
where drones are integrated. The MR environment immerses workers
in a projected but realistic job site, allowing them to interact with
drones in scenarios that closely resemble real-world conditions. The
use of a simulated MR environment is essential for several reasons:
First, construction is a safety-critical environment, and conducting an
experiment on an actual jobsite would expose workers to unnecessary
risks, potentially endangering their lives. Alternatively, the MR
environment provides a controlled and realistic environment where
naturalistic worker behaviors can be observed without compromising
safety. Second, this study mainly discussed the future construction
where the presence of drones will be prevalent, and MR offers a
platform to accurately simulate this future landscape. Third, by
leveraging the authenticity of MR, workers' perception of drone risks
across different interaction levels, attention allocation, productivity,
and subjective distraction assessment can be realistically captured.

To answer the above research question, this study examines the
following hypotheses to assess participants’ sense of presence in MR
environments and its applicability for studying their naturalistic
behaviors within different worker-drone interaction levels:

Hi: The developed MR environment with passive haptics and
drone-related features (i.e., actual dimension, spinning blades, and
sounds) strengthens workers’ sense of presence and interaction with
drones, ensuring their correct risk perception of drones.

H>: Varying levels of interaction with drones significantly
influences risk perception, attentional allocation, productivity, and

subjective assessment of distraction, leveraging the heightened
presence to capture workers’ realistic metrics.

The MR approach ensures that the study's findings are grounded
in realistic scenarios, making them more applicable to future jobsite
environments. The findings of this study aim to offer insights into
distinguishing distraction from SA across different levels of worker-
drone interaction.
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Fig. 2. Schematic representation of risks associated with worker-
drone varying interaction levels.

4 METHODOLOGY

41 Experimental Design

To simulate worker-drone interaction in future construction, an
MR bricklaying experiment in which workers were asked to team up
with drones at different interaction levels was developed, as illustrated
in Fig. 1. In the simulated experiment, workers completed a 7-min
bricklaying task with MULE, which is a real-world bricklaying robot,
while interacting with inspection and delivery drones, with these
drones representing human-drone coexistence and collaboration,
respectively. The MULE was designed to mitigate workers’ physical
burden by automatically lifting/dropping heavy concrete blocks while
workers manually applied mortar and moved MULE to the correct
positions. The sequential procedure that participants followed to
complete the bricklaying involved manually applying mortar, moving
the MULE to lift a block, and then placing the block onto the brick
wall. These procedures must be repeated until the end of the
experiment. The selection of this bricklaying task in this study stems
from its representativeness of other construction activities that,
traditionally, entail workers’ physical effort, but the physical burden
can be relieved from workers by incorporating robots, such as drywall
panel installation [42].

In the simulated context, the inspection drone coexisted with
workers by hovering overhead and following workers to examine the
environment and the workers’ progress for one minute. The
coexistence nature of this interaction lay in the fact that workers only
shared a workplace with the inspection drone without any shared goal
or object. On the other hand, the delivery drone collaborated with
workers by delivering a new mortar bucket to the workers on a
scaffold when the old mortar bucket was empty. During the interaction
with the delivery drone, the participants had to be in close proximity
to the drone and pick up the new mortar bucket to continue the
bricklaying task. Participants were given one minute to finish picking
and returning the bucket. Thus, this collaborative relationship was
built on the shared workplace, goal, and object between the workers
and the delivery drone.

It is worth noting that, apart from the inspection and delivery
drones, there were other irrelevant drones flying around the
construction sites without any interaction with participants. All the
drone-related interaction behaviors and flight paths were pre-defined
and implemented to control all participants experiencing identical
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interactions with drones. Therefore, this study considered three
interaction levels: no interaction (i.e., the drones on the background
without any interaction with workers), coexistence (i.e., interaction
with the inspection drone), and collaboration (i.e., the interaction with
the delivery drone).

To promote realism of the MR environment, the simulated
construction workplaces involved not only bricklaying-related objects
(e.g., concrete blocks, shovels, and mortar buckets) but also various
dynamic construction machinery (e.g., excavators), materials (e.g.,
rebar and concrete), and co-workers who were executing different
tasks to represent the dynamic nature of construction jobsites,
heightening the sense of presence. Additionally, the MR model was
enhanced with environmental modalities (i.e., construction
background sounds and wind simulated by a fan) and passive haptics
(i.e., physical guardrail of a scaffold) to enhance participants’ sense of
presence. To increase the sense of presence of the simulated drones,
the developed scenario included spinning blades and increasing drone
sounds as they approached.

4.2 Participants

This study recruited 105 healthy participants (71 males and 34
females) who were aged from 18 to 36 years (Mean= 22.857, STD=
3.404). All the subjects were current students with construction work
experience at Purdue University, representing the next generation of
workforce in construction. Having such work experience would
ensure their understanding of the responsibility for being a
construction worker. However, none of them possessed drone
experience within construction based on their self-report. A lack of
experience with drones would reflect the actual situation where drones
or other technologies are just introduced to jobsites.

4.3 Experimental Procedure

The experiment was initialized with participants signing a consent
form and filling out a demographic pre-survey. Subjects were
provided with a 10-minute training to familiarize themselves with the
bricklaying task and the functionalities of each drone. Then,
participants were equipped with a VR HMD with a built-in eye
tracker, two hand controllers, three motion trackers, a medical
wristband, and a functional near-infrared spectroscopy (fNIRS) cap.

Thereafter, they completed the 7-min bricklaying experiment,
experiencing both the coexistence and collaboration interaction
conditions with drones once, while the order of two conditions was
counterbalanced to prevent order bias in within-subject analyses. As
the no-interaction condition represented drones flying around the
construction site, durations without interaction with drones were
considered part of this condition. Finally, a post-survey was conducted
to understand their sense of presence and subjective distraction
assessment. The entire experiment approximately took one hour, and
a $40 Amazon gift card was offered as compensation for completing
the experiment. All the procedures were approved by the Purdue
Institutional Review Board (IRB).

4.4 Apparatus

HTC Vive Pro Eye (manufactured by HTC Corporation, Taoyuan,
Taiwan) was selected to present the developed bricklaying
experiment. It has a built-in Tobii eye-tracker with a refresh rate of 90
Hz and a 110° field of view. The MR environment was developed in
Unity, and the experiment was run on an Alienware PC with an AMD
Ryzen 9 5950X 16-Core processor and an NVIDIA GeForce RTX
3090 graphics card. Furthermore, the Empatica E4 wristband
(manufactured by Empatica, Boston, United States) was deployed to
collect real-time physiological data (e.g., electrodermal activity
(EDA)), and a fNIRS cap (Brite 23, Artinis, Netherlands) was used to
capture human brain activation. Due to the page limit and scope of this
paper, we mainly discuss eye-tracking findings and distraction-related
reporting.
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4.5
451

This study developed a MR environment to simulate the futuristic
bricklaying task where workers needed to interact with drones at
different levels. Since workers' naturalistic behaviors and responses
are crucial for the analyses, ensuring their high sense of presence in
the MR environment is essential. Therefore, this study examined the
sense of presence of the MR environment from two perspectives:
Place Illustion (P/) and Plausibility Illusion (Psi). PI refers to the
sense of being in a place that is not the physical location of the user.
In the developed MR environment, participants should feel as if they
are working on an elevated scaffold rather than in an office. On the
other hand, Psi represents the extent to which the events, interactions,
and objects within the environment are believable and consistent with
the users’ expectation based on real-world experiences. In this
experiment, participants should experience their interactions with
drones as realistically as they would in an actual construction site. By
ensuring both PI and Psi perspectives, the MR environment aims to
foster realistic immersion, and to make it suitable for studying worker
behaviors in drone-integrated jobsites.

In the 7-point Likert post-survey, participants were asked to
subjectively report their sense of presence by answering four main
questions, as shown in Fig. 3. The first two questions addressed the
evaluation of PI in the MR environment, while the other question
focused on Psi.

452

The participants’ visual attention toward each area of interest (AOI)
(i.e., different drones) was monitored to calculate two commonly used
eye-tracking metrics: dwell time and run count. Dwell time represents
the total time a subject fixated on an AOI, while run count denotes the
number of times a subject returned their attention to each AOL
Specifically, this study utilized dwell time percentage (i.e., dwell
time/total duration of each condition) and run count per second (i.e.,
run count/total duration of each condition). This processing mitigated
the bias resulting from the varying duration of different conditions.

4.5.3  Bricklaying Productivity

In the developed MR experiment, while participants might
maintain their SA of drones or be distracted by drones, the bricklaying
task represented the primary task that they should concentrate on.
More importantly, the productivity of the primary task is a key
indicator that provides insights into whether workers are being
distracted. Consequently, the bricklaying productivity rate (i.e., the
number of blocks laid by participants per second) across three
different interaction levels was calculated to mitigate the impact of
varying durations.

454

In addition to productivity, workers' subjective distraction
assessments provided insights into how they memorized and
perceived their distraction-related behaviors at different interaction
levels. As introduced, this study considered recall (i.e., the extent to
which subjects exhibited any distraction-related behaviors, such as
looking at drones) and reflection (i.e., the extent to which participants
felt it was necessary to exhibit distraction-related behaviors, such as
looking at drones) into the distraction assessment in a 5-point Likert
scale. The distraction questionnaire was developed by a well-cited
study [43].

455 Statistical Tests

Apart from descriptive analyses, this study executed multiple
repeated measure analysis of variance (RMANOVA) to conduct
within-subject analyses by comparing the difference in attentional
allocation, productivity, and distraction across three levels of human-
drone interactions. This approach ensures that individual differences

Performance Metrics and Statistical Tests
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# Description Type
QI To what extent you felt present in the virtual environment, as if you are really there and everything you saw was real? PI
02 To what extent you felt standing on a scaffold rather than an office during the experiment? PI
03 To what extent the visual aspects (e.g., virtual workers, equipment, and spinning blades) of the environment immerse you?  Psi
04 To what extent the auditory aspects (e.g., background sound and drone sound) of the environment immerse you? Psi

Q1

Q2

Q3

10% 5% 0% 5% 10% 15% 20% 25% 30% 35% 40%

45%

50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Percentage of Responses

mmm Strongly Di Di S hat Disagree

Neutral

Fig. 3. Participants’ sense of presence.

are controlled, allowing for a more precise analysis of the effects of
the interaction conditions on the measured variables.

5 RESULTS

5.1 Sense of Presence in MR Environment

Participants’ high sense of presence in this MR environment can
be verified by the high PI (Q;: Mean + STD = 6.114 + 0.993, Median
=6.0; 02: Mean £+ STD = 5.943 + 1.082, Median = 6.0) and Psi (Qs:
Mean + STD =5.800 + 1.369, Median = 6.0; Q+: Mean = STD =5.974
+ 1.411, Median = 7.0) values, supporting the first hypothesis ().
Fig.3 illustrates the distribution of participants’ responses to
individual questions. The results provided a reliable foundation,
showing that the MR environment accurately reflected future
construction sites and that the collected data captured workers'
naturalistic behaviors during their interactions with drones.

5.2 Worker Attentional Allocation across Different

Interaction Levels

This study considered two eye-tracking metrics (i.e., dwell time
percentage and run count per second) to understand how participants
allocated their attentional resources on drones across different
interaction levels. Fig. 4a shows a graphical overview of the
relationship between dwell time percentage and three interaction
levels: no interaction (Mean + STD = 0.461 + 0.803), coexistence
(Mean + STD = 4.864 + 7.087), and collaboration (Mean = STD =
7.675 + 6.175). The results from ANOVA analysis showed that the
impact of interaction levels on dwell time percentage was significant
(F(2,312)=46.777, p=0.000<0.05, #°=0.403). The post-hoc Turkey
tests confirmed the significant difference between each pair of
interaction levels: (i) no interaction vs. coexistence (¢#(3/2)=5.856, p=
0.000<0.05, d= 5.113), (ii) no interaction vs. collaboration (#(3/2)=
9.595, p= 0.000<0.05, d= 1.637), and (iii) coexistence vs.
collaboration (#(312)=3.739, p= 0.000<0.05, d= 0.637).
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Fig. 4. Changes in worker attentional allocation toward drones
across three Interaction Levels. (** p<0.05)
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Moreover, Fig. 4b presents how subjects’ run count per second
varied according to the conditions of no interaction (Mean + STD =
0.014 £ 0.018), coexistence (Mean + STD = 0.067 + 0.059), and
collaboration (Mean + STD = 0.343 £ 0.220). The ANOVA test
indicated a significant effect of interaction levels on run count
(F(2,312)= 188.351, p= 0.000<0.05, °=0.522). Similarly, the post-
hoc analyses showed the significant difference between each pair of
interaction levels: (i) no interaction vs. coexistence (¢(312)=2.909, p=
0.011<0.05, d= 0.735), (ii) no interaction vs. collaboration (¢(312)=
18.073, p= 0.000<0.05, d= 2.081), and (iii) coexistence Vs.
collaboration (#(312)=15.164, p=0.000<0.05, d= 1.646). The findings
supported the second hypothesis (H2).
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5.3 Worker Productivity across Different Interaction

Levels

As highlighted, productivity is critical in identifying human
distraction at work. Therefore, subjects’ bricklaying productivity rates
across different interaction levels were recorded, including no
interaction (Mean £+ STD = 3.246 + 1.020), coexistence (Mean + STD
=2.805 £ 1.032), and collaboration (Mean = STD = 2.258 + 1.292),
Fig. 5. The outcome of the ANOVA test revealed that interaction
levels significantly influenced workers’ productivity rate (F(2,312)=
20.449, p=0.000<0.05, 7°=0.103). Additionally, the post-hoc analyses
demonstrated the significant difference between each pair of
interaction levels: (i) no interaction vs. coexistence (¢(312)=2.849, p=
0.013<0.05, d= 0.377), (ii) no interaction vs. collaboration (#(312)=
6.383, p= 0.000<0.05, d= 0.862), and (iii) coexistence Vvs.
collaboration (¢(312)= 3.534, p= 0.001<0.05, d= 0.430). These
outcomes aligned with the second hypothesis (H2).
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Fig. 5. Changes in worker productivity across three levels of
interaction with drones. (** p<0.05)

No Interaction

5.4  Worker Subjective Distraction Assessment across

Different Interaction Levels

Fig. 6 presents a graphical overview of these two metrics across
different interaction levels. Specifically, participants’ recall scores
were low, medium, and high under the conditions of no interaction
(Mean £ STD = 2.305 + 1.194, Median = 2.0), coexistence (Mean +
STD =2.800 + 1.577, Median = 2.0), and collaboration (Mean = STD
=3.533 + 1.442, Median = 4.0), respectively. This result aligned with
the findings derived from eye-tracking metrics (i.e., dwell time and
run count).
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Fig. 6. Changes in worker distraction recall and their reflections on
necessity of allocating attention toward drones at three interaction

levels.
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On the other hand, regarding the reflection, a similar trend was
observed, where participants exhibited low scores under no interaction
(Mean + STD = 1.952 + 1.086, Median = 2.0) and medium scores
under coexistence (Mean £ STD =2.257 + 1.101, Median = 2.0). Their
high score was identified at the collaboration level (Mean + STD =
3.771 £ 1.288, Median = 4.0). It is worth highlighting that the
comparisons between the recall and reflection scores indicated
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dissimilar patterns across different interaction levels. Overall,
participants felt that the number of distraction-related behaviors they
exhibited was unnecessary under the no interaction and coexistence
levels. By contrast, they felt it was vital to maintain their situational
awareness by checking the drone status frequently at the collaboration
level. These findings confirmed the second hypothesis (H>).

6 DiscussIiON

Although drones display huge potential to improve construction
efficiency and automation, previous studies have already mentioned
that drones could become a hazard (i.e., workers should maintain SA)
or a distractor for workers [7]. However, given that SA and distraction
relate to visual attention, it remains unknown whether workers are
situationally aware of drones, which is a positive statement, or
distracted by drones, which is a negative statement. Therefore, this
study aims to address this issue by developing MR environment to
capture workers’ naturalistic behaviors across different levels of
interaction with drones. Based on participants’ self-report in the post-
experiment interview, the passive haptics (i.e., physical guardrails)
and environmental modality (i.e., wind and construction sound)
facilitated their high sense of presence in the MR environment.
Moreover, the manipulated visual (i.e., spinning blades) and auditory
(i.e., drone sound) aspects of drones enhanced participants’ perception
of interacting with real drones. This finding was consistent with a
recent study investigating whether drones trigger user stress and
discomfort [44]. The authors corroborated that the ecological validity
of'the virtual environment was strengthened by adding spinning blades
and unpleasant drone sound. To summarize, participants' high sense
of presence in the MR environment ensured that their risk perception
of drones at different interaction levels was realistic and as expected
(see Fig. 2).

Given that participants’ high sense of presence and interaction has
been validated by their self-report, it is reliably anticipated that they
should perceive the risk levels of no interaction, coexistence, and
collaboration as low, medium, and high. The discussion would
consider the condition of no interaction as a baseline to evaluate
whether workers were situationally aware of drones or distracted by
drones. Regarding attention, the results derived from eye-tracking
metrics indicated that participants allocated significantly more
attentional resources to drones in coexistence and collaboration. This
finding confirms our premise that human-drone interaction captures
worker attention, regardless of whether it stems from SA or distraction
[45,46], necessitating the consideration of other performance metrics.

During worker-drone coexistence, the analysis shows that workers
exhibited significantly lower productivity than their counterparts for
no interaction. This phenomenon suggests the possibility of workers
being distracted by drones; however, as previously mentioned,
assessing their intention is also important in drawing a conclusion.
Based on participants’ subjective distraction assessment, they felt the
number of distraction-related behaviors under coexistence was
unnecessary. This reflection challenges the notion that workers
intentionally focus on the drones during coexistence, instead
indicating that their attention is being diverted involuntarily by the
drones, leading to distraction.

Further, workers’ significantly lower productivity was found
during human-drone collaboration, indicating the possibility of
distraction. Nevertheless, the subjective distraction assessment
reflects that the participants felt it was necessary to allocate more
attention to the drones. This reflection supports participants
intentionally allocated attention and maintained situational awareness
of drones during collaboration, which, in turn, impacted their
productivity.

Although this research has exhibited considerable contribution to
the body of knowledge and practice, there remain some limitations
worth noting. First, this study recruited current students who represent
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the next generation of the workforce in the experiment; however, more
experienced workers can also be recruited to replicate this study.
Second, apart from attentional allocation, other human
psychophysiological responses can be included in the analysis to
explore different aspects (e.g., cognition and stress) of SA and
distraction. Third, while this study included larger number of male
participants compared to female ones, reflecting the current male-
dominated demographic in the construction industry, it is worth
examining the potential impact of gender on workers’ behaviors
during human-robot interactions. Fourth, this study concentrates on
the situation where workers remain unfamiliar with robotic
technologies at the beginning, while how the findings will be changed
by their long-term exposure must be addressed.

7 CONCLUSIONS

This research conducted a user study examining the potential of
deploying the MR environment to understand whether workers were
situationally aware of drones or distracted by drones across different
interaction levels. This potential has been validated by participants’
self-report of their high sense of presence in the MR environment and
of interaction with drones, providing a reliable platform to capture
workers’ naturalistic behaviors across different levels of human-drone
interaction in future construction. Moreover, the findings illustrated
that workers were distracted by drones during coexistence according
to their decreasing productivity and subjective distraction assessment.
However, workers were more situationally aware of drones during
collaboration, supported by their intention to allocate attention to
drones. To summarize, this study contributed to (i) verifying the
robustness of the MR environment in simulating human-drone
interaction on future jobsites, and (ii) distinguishing situational
awareness and distraction based on multidimensional performance
metrics across different interaction levels. Further, this MR approach
ensures that the study’s findings are grounded in realistic scenarios,
making them more applicable to future jobsites.
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