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Figure 1: We have developed an optimization-based approach to automatically generate the scenarios (left) used for wheelchair
training with different user-specified levels of difficulty. We test our generated scenario by developing a training program using
VR trackers attached to the wheels of a stationary wheelchair to simulate motion in virtual space(right).

ABSTRACT

In this paper, we propose an optimization-based approach for au-
tomatically generating virtual scenarios for wheelchair training in
virtual reality. To generate a virtual training scenario, our approach
automatically generates a realistic furniture layout for a scene as well
as a training path that the user needs to go through by controlling a
simulated wheelchair. The training properties of the path, namely, its
desired length, the extent of rotation, and narrowness, are optimized
so as to deliver the desired training effects. We conducted an evalua-
tion to validate the efficacy of the proposed virtual reality training
approach. Users showed improvement in wheelchair control skills
in terms of proficiency and precision after receiving the proposed
virtual reality training.

Index Terms: Virtual Reality—Modeling and Simulation—
Wheelchair Training Simulator

1 INTRODUCTION

Wheelchairs are used for those who have difficulty walking on their
own. This can be due to illness, injury, or disability. Every year, there
are nearly two million new wheelchair users in the U.S. alone [30].
Learning how to properly use a wheelchair is crucial because it will
frequently become the primary source of transportation for these
new wheelchair users. A skilled wheelchair user is able to properly
maneuver around sharp turns and pass through narrow pathways in
a timely manner without running into obstacles.

There are currently various methods [3, 8, 21] to learn how to use
a wheelchair:

• Human coach - This is in-person guidance to teach users how
to use a wheelchair. This method has shown success when
taught in one-on-one training environments [3, 21].

• Self-teaching through trial and error - A user maneuvers
a wheelchair on their own and rides the wheelchair with no
guidance, expecting to improve. This method has not shown
significant improvement within a short period of time [8].

• Instruction video/manual - User follows instructions via
video or manual on the proper usage of a wheelchair by reading
and watching. This is time-consuming and its efficacy depends
on the user’s patience.

All of these wheelchair training methods share a common flaw
which is that they make it difficult to practice in multiple different
environments. We attempt to solve this by using virtual reality
simulation. As shown in Figure 1, our simulation allows users to
train themselves in multiple environments with customized scenarios
automatically generated through an optimization process.

During the VR training, the user requires no previous experience
with wheelchair usage. Through the VR training scenarios synthe-
sized by our technical approach, users can improve their proficiency
in controlling the wheelchair in real-life. The goal of our approach is
to release the users from the limitations of the current environments
they are facing by automatically generating training scenarios in
virtual reality. The major contributions of our work include the
following:

• Proposing a novel optimization-based approach to automat-
ically synthesize the training scenarios for improving the
wheelchair skills with different training goals.

• Developing a physics-based wheelchair simulation that is
highly immersive to enable users to maneuver the virtual
wheelchair in the same way as they maneuver the real
wheelchair.

• Conducting a user study to validate the effectiveness of the
training scenarios synthesized through our optimization-based
approach.



Figure 2: Overview of our approach. This figure shows the approach of our research. Pre-evaluation: before the VR training, the user completes
a predesigned real-world task in the laboratory during which the user navigate the wheelchair along a specified path with their performance
recorded. Automatically synthesized training scenario: VR training scenarios that are automatically generated will be used for the VR training.
VR wheelchair training: We have developed a physics-based simulation that is capable of mapping the motion of a real wheelchair into the
virtual space by tracking the wheels’ rotation with two HTC VIVE VR trackers. With the optimized scenarios loaded into this wheelchair VR
simulator, the users are placed in the VR headset and sat down in the raised wheelchair to keep the wheels off the ground. Post-evaluation:
after the VR training, the user is asked to finish the same real-world task in the pre-evaluation stage and the performances are compared.

2 RELATED WORK

Traditional Wheelchair Training. Human coach training is the
prevalent training method. When community-dwelling veterans
with spinal cord injuries were individually trained in a home envi-
ronment, they showed significant improvement to their wheelchair
skills [21]. However, when novice subjects used a wheelchair with-
out guidance, there was no significant improvement over time [8].
While the user may not receive explicit guidance, the VR training
allows the user to encounter the same scenarios they would get with
an instructor and more. Other training methods such as long term
low-intensity wheelchair training [7] indicate that users’ mechanical
efficiency increased and metabolic cost decreased significantly over
time. However, this method lacks variation which could lead to bore-
dom and decreased efficiency. Randomized clinical trials show that
formal wheelchair training sessions result in significantly greater
improvement than standard rehabilitation programs [26]. Our goal
is to create an informal training program that is just as effective with
more flexibility in terms of time, place and efficiency.

Virtual Reality Training and Simulation. There are many suc-
cessful pieces of research about virtual reality training simula-
tions that have been developed in the past in different fields of
research areas including virtual reality surgical simulation and
training [13, 15–17, 23, 37], virtual reality driving training pro-
grams [5, 10, 24] and task-driven virtual reality trainings such as
industrial maintenance trainings [14], mining industry skills prac-
ticing [35] and shooting simulation [40] etc. Inspired by these
successful studies which validate that VR training technologies can
be a replacement for traditional training methods, our project ex-
plores how the virtual reality wheelchair training can be a substitute
for traditional wheelchair training methods. As one important advan-
tage of virtual reality training, trainees in the virtual world will be
spared from any real-world injury in potentially dangerous scenarios
such as earthquake safety training [25] and other natural disaster
training [31]. This property of virtual reality allows the disabled to
maneuver themselves in a wheelchair safely and injury-free through-
out the training process. The virtual reality training interface also
provides more flexible and comprehensive training scenarios. By
allowing the user to specify the generated training scenarios, a user
can target certain skills to work more efficiently. Human factors
such as players’ driving habits [24] and physical movement in ex-
ergames [39, 41] can be emphasized by formulating an optimization
problem to solve the parameters of a training scenario that best

matches the desired training goals. These facts drive our work to
parameterize the wheelchair training scenario, to formulate it as an
optimization problem, and to optimize the solution.

Wheelchair Simulation in Virtual Reality. Virtual reality pro-
vides a convenient interface for training [38] or improving skills
by allowing users to repeat tasks as long as they choose to [33].
Wheelchair simulation in VR can be used for either training or en-
tertainment. Herrlich et. al. [19] successfully converts the driving
characteristics of commonly used electric wheelchairs into the vir-
tual physics system of a game engine and validates their system
using a physics simulator. At the same time, multiple system modes
for intelligent wheelchair behavior simulation are implemented by
taking into account the kinematics of the wheelchair in the simu-
lation [29]. Rodriguez et al. [33] develop a wheelchair simulator
that is able to help disabled children familiarize themselves with
the wheelchair. Harrison et al. [18] offer the conclusion that virtual
environments are potentially useful to train inexperienced powered
wheelchair users. However, these simulations [19, 29, 32, 33] only
focus on electronic wheelchair control using the Joystick. In reality,
many (if not most) new wheelchair users are using mechanical and
not electrical wheelchairs. One alternative wheelchair simulation
game [36], instead of using a joystick, has users maneuver them-
selves in a virtual wheelchair passing through multiple obstacles
by pushing two SteamVR controllers forwards and backward. This
game can be fun and replicates in some ways the movement of
pushing a traditional mechanical wheelchair, but it lacks realistic
mechanics and realistic physics. It serves essentially as an enter-
tainment tool, whereas our goal is to develop a system that can be
used to effectively train a wheelchair user. In our work, we present
a novel approach to simulate a mechanical wheelchair in a virtual
environment, automatically generating realistic scenarios that allow
the user to improve driving skills while avoiding the risks inherent
in real-world training. In addition to providing variable scenarios
that mimic real-world situations, we are binding the VR trackers on
the wheels of a wheelchair held in a stationary position so that users
can maneuver themselves in the VR scene by pushing actual wheels
as they would while actually driving a wheelchair.

3 OVERVIEW

In this project, we propose an optimization-based approach for au-
tomatically generating scenarios for wheelchair training in virtual
reality. As shown in Figure 2, we develop a program that will au-



tomatically optimize a furniture arrangement to create a realistic
indoor room and a path with predetermined characteristics such
as length, rotations, and narrowness. Manually tuning the indoor
room layouts and adjusting the paths to achieve the training goals
could be nontrivial, inaccurate and time-consuming for the designers.
Therefore, we optimize the training scenarios automatically using
the Metropolis-Hastings Algorithm.

In our approach, we extract spatial relations between various fur-
niture objects, set the path parameters, and combine them in a cost
function. With these combined costs the optimizer can automatically
generate a realistic furniture layout along with a traversable training
path. As the realistic indoor room layout connects the VR training
tasks more closely towards real-world navigation tasks, the train-
ing scenarios generated through our approach demonstrates high
effectiveness. The different layouts are optimized using constraints
that would normally be placed on furniture in a living room, office,
a bedroom such as having a desk facing a chair or a bed along a
wall. Furthermore, we can apply our approach to generate virtual
training scenarios for rooms of different sizes, whose layouts will be
optimized by our approach. In other words, both large-scale training
scenarios (e.g., a conference hall) and small-scale training scenarios
(e.g., a small apartment) can be synthesized automatically. Note that
regardless of the size of the virtual room synthesized, the user can
practice in a small room in the real world as the training is done
through a VR setup and a stationary wheelchair.

The properties of the path, namely, its desired length, the extent of
rotation, and narrowness, are optimized to deliver the desired training
effects. A path with multiple rotations improves the skills of a user
who struggles with maneuvering around objects while a narrow
path helps a user who struggles with running into objects. These
paths can be arranged in degrees of difficulty with a combination
of all three of these characteristics. Figure 2 depicts an example
of furniture and path. We initialize the objects in random positions
and orientations in the room. Each initialized object has a specified
pair that is relied on in the optimization process. An example of
a pair might be a desk and chair. Since the chair should remain a
certain distance from the desk as well as face it, the optimizer takes
into account the position and rotation of the chair with respect to
the desk to decide whether or not it is set up correctly. During the
optimization process, the orientations and positions of the training
path and objects in the room will be optimized to form a desired
virtual training scenario.

4 TRAINING SCENARIO GENERATION

In order to synthesize training scenarios focusing on different skills
of the users for maneuvering the wheelchair efficiently, our approach
optimizes both a scene arrangement [12] and path, which help users
achieve their training goals. The optimization process focuses on
two parts, the first being the placement of the object and the second
being the path generation. In this section, the details of the problem
formulations are described.

4.1 Cost Functions

Overall Cost. A training scenario consists of a scene and
a path. Let scene graph [11] S = (V,Θ,E) denote a scene
consisting of M objects whose positions are denoted as V =
{v1,v2, ...,vM} and the rotations as Θ = {θ1,θ2, ...,θM}. Where,
E = {(i, j)| 1≤ i≤M, 1≤ j ≤M, i 6= j} are pairs of indices (i, j)
with object i containing a pairwise relationship [34] with object j.
Let path P = {p1,p2, ...,pN} denote the N nodes of a generated path
for training. The overall cost of a training scenario is Ctotal(P,S):

Ctotal(P,S) = CSwT
S +CPwT

P (1)

where CS =
[
Cd

S,C
r
S
]

is a vector of scene costs and wS =
[
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r
S
]
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S is the pairwise distance cost of the

objects in the scene defined in Equation 2. The Cr
S is the pairwise
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[
wd
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P
]

is a
vector of weights. The Cd

P is path distance cost defined in Equation 4.
The Cr

P is the path rotation cost defined in Equation 5. The Cn
P is the

path narrowness cost defined in the Equation 6.

Pairwise Distance Cost. Each object has a specified distance cost
used to determine a distance from its pair. This cost allows for
a reasonable distance between pairs. For example, it would be
unreasonable to place a couch up against a TV nor would it be
appealing to have a couch too far away from a TV. The pairwise
distance cost avoids such scenarios by allowing a target pairwise
distance to be specified by the user. Given the list of object positions
as vector V and the pairs indices vector E, the pairwise distance cost
Cd

S(V,E) is denoted as:

Cd
S(V,E) = ∑

∀(i, j)∈E

(
||vi−v j||−di, j

)2 (2)

where given any pair (i, j), vi is the position of object i and v j is
the position of object j and di, j is the prespecified target distance
between these paired objects.

Pairwise Rotation Cost. An object can specify a certain rotation
with respect to its paired object. The orientation of certain objects
is important for creating a realistic layout. Without this cost term,
objects may face in random directions rather than towards their pairs.
The pairwise rotation cost is calculated as the difference between
the relative angles of the paired objects and their expected relative
angles. Given the list of angle rotations of objects denoted as vector
Θ and the pairs indices vector E, the pairwise rotation cost is denoted
as:

Cr
S(Θ,E) = ∑

∀(i, j)∈E

(
||θi−θ j||−δi, j

)2 (3)

where given any pair (i, j), θi is the rotation of object i and θ j is
the rotation of object j and δi, j is the target relative angle between
object i and j.

Path Distance Cost. A path be-
gins at the wheelchair and ends
at the target. The target position
is randomly sampled during the
optimization process. The path
is optimized as the furniture at-
tempt to place themselves around
in the room. A distance, rotation,
and narrowness for the path can
be specified and used to raise or
lower the difficulty of the path gen-
erated. A wide and shorter path
with fewer rotations may consti-
tute an easier path to navigate than
one that is narrow, long and winding. Given a path with N nodes
as P = {p1,p2, ...,pN}, the path distance cost which measures the
difference between path distances P and the user-specified target
distance dpath is denoted as Cd

P(P):

Cd
P(P) =

(
N−1

∑
i=1
||pi+1−pi||−dpath

)2

(4)

As shown in the right figure, the total distance of a path can be
calculated by summing up the distances between every two adjacent
nodes in the path pi and pi+1.



(a) Initialization (b) Iteration 100 (c) Iteration 500 (d) Iteration 1000

Figure 3: This figure shows an example of the optimization process. Figure (a) shows the initialization of the placement of the objects in the
scene and a randomly generated path. Figure (b) (c) (d) shows a new frame in the optimization process based on the number of iterations
completed at the time. Both the placement of objects and the path are randomly sampled in the scene to find the best scenario that matches the
user’s specified training goal. Figure (d) shows the result of the final generated training scenario.

Path Rotation Cost. The cus-
tomization of the path rotation
is vital for adjusting the simu-
lation difficulty for a user. It
is important to have adjustable
path difficulty for the user. For
example, if a user cannot navi-
gate turns well, adjustments can be made to have the path gradually
increase rotations until the user feels comfortable with turning. The
path rotation cost measures the difference between the rotation num-
ber of the path P and the user-specified target rotations rpath, denoted
as Cd

P(P) :

Cr
P(P) =

(
N−1

∑
i=2

Γi(P)− rpath

)2

(5)

where the rotation boolean function Γi(P) returns 1 when
pi+1 − pi 6= pi − pi−1, otherwise the function returns 0. As
shown in the right figure, the rotation number increases
only when the adjacent two nodes have different directions.

Path Narrowness Cost. A
path narrowness cost was in-
troduced in order to manage
the training difficulty with re-
spect to how narrow a path is.
Narrower paths require more
precise control which mim-
ics training scenarios within a
tight virtual space. The path
narrowness cost measures the difference between the average nar-
rowness of path P and the user-specified path narrowness npath and
is denoted as Cn

P(P,S) :

Cn
P(P,S) =

1
N

N

∑
i=1

(||pi−qi||+ ||pi−wi||−npath)
2 (6)

where qi is the position of the object in the scene S which is closet
to the path node pi on the left side, wi is the closet object pi on the
right side.

4.2 Optimization
The goal is to synthesize a realistic setup of a room and an expected
training path that a user can navigate with a wheelchair. This is
done by minimizing the total cost of the training scenario Ctotal
in Equation 1. Positions of the objects in the scene are sampled
randomly within the room to minimize the scene costs CS based on
the parameters specified for each pair of objects. At the same time,

the path is randomly sampled between the objects in the scene to
minimize the path cost Cp.

Path Computation. As illustrated in Figure 3, the optimization of
the path is specified using three main costs, the distance of the path
shown in Equation 4, the rotations of the path shown in Equation 5,
and the narrowness shown in Equation 6. During the optimization,
starting from the wheelchair, A* algorithm, a widely used pathfind-
ing and graph traversing algorithm [6], is employed to generate a
random path in each iteration. Randomly sampled paths are accepted
when they are closer to the target path than the previous path. Until
the best path is found given the currently synthesized layout of the
scene.

Optimization Steps. Each optimization step has three types of
moves:

• An object moves to a random position.
• An object rotates to a random orientation.
• The path target moves to a random position.

In our optimization approach, the Metropolis-Hastings Algo-
rithm [27] is used to find the optimal solutions. During each it-
eration, whether or not to accept a new move is decided by an
acceptance probability. This acceptance probability is determined
by the total cost of the current status (P,S) and the proposed status
(P′,S′). Bounding the range of the total cost function Ctotal(P,S) to
the interval [0,1], we define a Boltzmann-like function [1] f (t):

f (t) = exp
(
−1

t
Ctotal(P,S)

)
where t is the temperature parameter of the Metropolis-Hastings
Algorithm [22]. As t decreases, the optimizer is less likely to accept
a worse solution. The acceptance probability function is denoted as
Pr(P′,S′|P,S):

Pr(P′,S′|P,S) = min
(

1,
f (P′,S′)
f (P,S)

)
The acceptance probability function [22] is dependent on the

number of iterations. At the start of the optimization, the temperature
is set to 1.0, giving the optimizer a higher probability of accepting
incorrect moves. As the iterations increase and the temperature
decreases, the algorithm becomes more greedy [9] and less likely
to accept worse moves than before. When the optimizer reaches
its final stages all bad moves are discouraged and minimized to a
probability close to zero.

Changing Parameters. As shown in Figure 4, different path pa-
rameters, and weights are applied for generating different training
scenarios. Higher priority is placed on the terms with higher weights.
Consequently, adjusting the settings of the weights generates paths
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(a) Long distance path (b) High Rotations Path (c) High Narrowness Path

Figure 4: We have 9 different training scenarios including Column (a): long path training scenarios. Column (b): high rotations path training
scenarios and Column (c): high narrowness training scenarios with different scene settings: First row: the bedrooms, second row: the office
rooms and the third row: the living rooms.

emphasizing different training skills. These terms are defined in
Equation 1:

• Path Distance: Column (a) has a longer distance target dpath =

100 with a stronger distance weight wd
P = 0.6, while Column

(b) and (c) have shorter distance targets dpath = 50 with weaker
distance weights wd

P = 0.2.

• Path Rotation: Column (b) has a higher rotation target rpath =
4 with a stronger rotation weight wr

P = 0.6. While Column (a)
and (c) have a lower rotation target rpath = 1 with a weaker
rotation weight wr

P = 0.2.

• Path Narrowness: Column (c) has a smaller narrowness target
npath = 10 with a stronger narrowness weight wn

P = 0.6. While
Column (a) and (b) have a wider narrowness target npath = 20
with a weaker narrowness weight wn

P = 0.2.

The weights specified above allowed for the prioritization of
certain parameters over others. The higher the weight the more
emphasis is placed on that characteristic. For example, in Column(a)
of Figure 4, priority is placed on the path distance and lower weights
are put on the path rotations and narrowness. This makes the path
focus more on reaching the desired length rather than the rotation or
narrowness. These settings are used for generating the nine different
training scenarios for the user study in Section 6.2.

5 WHEELCHAIR SIMULATION

We simulate the motion of the wheelchair in a randomly generated
training scenario by attaching VR trackers onto a real wheelchair.
As shown in Figure 5, we apply the physics-based simulation [20]
to simulate the different motions of the manual wheelchair [2] such
as moving forward, backward and rotating.

With the HTC VIVE trackers, we can track the precise position
of a point on the wheel. Let symbol ∗ denotes either left l or right
r, then by defining p∗ as a tracker’s position and c∗ as a wheel’s
center position, we can calculate the angular speed of both sides of
the wheels ω∗(t) as a function with respect to time t:

ω∗(t) = cos−1 r∗(t) ·r∗(t−∆t)
|r∗(t)| · |r∗(t−∆t)|

δ∗(t) (7)

where r∗(t) is the radius vector of a wheel, which is defined as:

r∗(t) =
p∗(t)− c∗
|p∗(t)− c∗|

and the δ∗(t) is the rotation direction of a wheel, defined as:

δ∗(t) = sgn(r∗(t)× r∗(t−∆t).x)

In our simulation approach, the wheelchair is always facing along
the z axis. Wheelchair movement in the simulation is done by
translated and rotating the scene rather than the virtual wheelchair.
For example, when the wheelchair seems to move forward in the
simulation, it actually remains static while the scene moves past it.



Figure 5: Physics-based wheelchair simulation: This figure shows
the rotation of a scene relative to a stationary VR wheelchair accord-
ing to the physics simulation. Two trackers are rotating as the user is
pushing or pulling the wheels of the physical wheelchair. Let o(t) be
the center of the wheelchair and vl(t) and vr(t) be the linear speed
of the left and right wheels. Any point p(t) in the scene will rotate
along the center o(t) with angular speed α(t) which is decided by
vl(t) and vr(t). Given an arbitrary point p(t) whose distance to the
center o(t) is r(t), after the rotation of the scene, the new position
of that point will be p′(t) = p(t)+α(t)× r(t).

Given the wheels’ angular speed in equation( 7). Let R denotes
the radius of the wheels, and, s(t), the linear speed of the scene is
calculated as:

s(t) = sgn(ωl(t))min(|ωl(t)|, |ωr(t)|)R

Let v∗(t) = R · (|ω∗(t)|−min(|ωl(t)|, |ωr(t)|)) denotes the rel-
ative linear speed of the left wheel or right wheel, as shown in
Figure 5, the rotation speed of the scene α(t) is calculated as:

α(t) =


sin−1

(
vl(t)
|cl−cr |

)
sgn(ωl) vr ≤ vl

−sin−1
(

vr(t)
|cl−cr |

)
sgn(ωr) vr > vl

(8)

However, Equation 8 works well when the two wheels are rotating
in the same direction. If the rotation directions of two wheels are
opposite to each other, then the wheelchair will only rotate along the
axis at the center of o(t) which is calculated as:

o(t) = lerp
(

cl ,cr,
|ωl(t)|

|ωl(t)+ωr(t)|

)
in this case, the rotation speed of the scene α(t) is calculated as:

α(t) = sin−1
(
|ωl(t)R|
|cl −o(t)|

)
sgn(ωl)

6 EXPERIMENTS

6.1 Implementation
We implemented our approach using C# and Unity 2019.2.0f1. The
pre-evaluation and post-evaluation were conducted using a physical
wheelchair. The VR training was run using a PC with 32.0 GB RAM,
a 3.60Hz Intel(R) Core i7-9700K CPU processor, a Fresco Logic
IDDCX Adapter graphics card, and a physical wheelchair with HTC
VIVE trackers attached to the wheels.

6.2 Training and Evaluation
To verify the effectiveness of our VR wheelchair training, we let
users go through a three-stage study. The three stages are:

• Pre-evaluation: The user used a physical wheelchair in a
room where their wheelchair control skills were tested.

• Training: The VR wheelchair training included nine unique
scenarios with different target settings described in Section 4.2.

• Post-evaluation: The user ran through the same course as the
pre-evaluation.

Figure 6: The real-world scenario used for evaluation. Left: Top-
down view of the scenario with the path shown. Right: Photo of
the scenario; water bottles were placed on the ground to measure
collision.

Users. We recruited 15 users among whom two have used a
wheelchair before while others have not. Each of them was put
into the three-stage study in which different performances were
recorded. The goal of this user study was to determine the effects of
wheelchair training on the user’s ability to maneuver a wheelchair.

In order to measure whether or not any improvement occurred,
two metrics were used to determine the amount of improvement. The
first metric was the number of obstacles a user collided with; in this
case, the obstacles were bottles. This metric determined whether or
not there was a significant increase in the user’s wheelchair control
skill from the number of bottles collided with.

The second metric measured during the evaluations was the time
it took a user to complete the task. A user completing tasks more
quickly after the VR training indicated an improvement in the user’s
ability to use a wheelchair more efficiently.

Pre-evaluation. The pre-evaluation took place in a physical room
where the users used a real wheelchair to navigate through a specified
path labeled by paper markers as shown in Figure 6. Each user sitting
in the wheelchair was put in a room with multiple obstacles, in our
case, water bottles. He was asked to go through the room following
the pre-determined path on the floor marked by the papers and then
to return back to the start point. This phase took the user an average
of one to two minutes to complete. His performance was tracked
with the number of water bottles he collided with and the amount of
time it took him to complete the entire course.

VR Training. After having completed the pre-evaluation in the
physical room, the user performed the virtual reality training. During
the VR training, the user was put into nine training scenarios, all
of which were pre-optimized with the technical approach described
in Section 4.2. The scenarios encompassed three different types of
rooms with three path settings for each type of room as shown in
Figure 4. The three different rooms included a bedroom, an office
and a living room. In each type of room, the user went through
training scenarios with three different specified path targets, namely,
long-distance path, highly rotating path, and narrow path.

• Long-distance path: The path was straight and long for the
user to practice controlling the wheelchair to go straight.

• Highly-rotating path: The path had more rotations so the user
practiced navigating the wheelchair in environments involving
a large number of turns.

• Narrow path: A narrow path was used to enhance the user’s
skill of controlling a wheelchair precisely.

As shown in the Figure 4, different types of paths varied in the
number of rotations, path length, and path narrowness allowing for



(a) Bottle collisions number (b) Time to finish

Figure 7: This figure shows the bar plots of pre-evaluation(blue) and post-evaluation(orange). There were 15 users in total. Figure (a) is the
number of bottle collisions. Figure (b) is the time to finish the task for each user.

different aspects of VR training. The objective of the users during
the VR training was to follow the automatically generated path as
closely as possible.

During the VR training, the user was asked to follow the path of
red spheres in the VR room. During the training, the user sat in a real
wheelchair, which was raised to keep the wheels off the floor. To
move the wheelchair in virtual space the physical wheelchair wheels
were pushed. The trackers attached to the wheel picked up the
movement and moved the virtual wheelchair through the simulation
approach described in Section 5. For each training scenario, it took
about 45-90 seconds to complete the task. Overall, it took about
10-15 minutes to complete the whole VR training with nine different
scenarios.

Post-evaluation. In order to validate that after the nine different VR
training scenarios, the user’s proficiency and the precision of the
wheelchair control improved significantly, the same real-world task
was assigned to the user again in order to compare his performance
before and after. In the post-evaluation, the user reran the same
course and completed the same tasks that were specified in the pre-
evaluation. The measurement of the time it took to complete the
tasks as well as the number of bottles that the user collided with the
second run were recorded and analyzed to determine whether or not
the user benefited from the training.

After having the user completed all the assigned training tasks, the
user was prompted to complete a questionnaire that offered different
questions for feedback on the effectiveness of the VR training in
their ability to use a wheelchair, and whether or not the simulation
was realistic compared with a real wheelchair.

7 RESULTS AND DISCUSSION

We discussed the results of the different training sessions and ana-
lyzed users’ improvement in terms of how well the wheelchair was
controlled before the VR training and after. In order to prove that
the user’s proficiency and the precision of the wheelchair control
improve after completed the VR training scenarios automatically
generated through our technical approach described in Section 4.2,
we compared the users’ performance during the pre-evaluation and
the post-evaluation. The comparison includes bottle collisions dur-
ing the evaluation and total time to complete the evaluation.

As shown in the Figure 7. there are two columns for each of
the 15 users, illustrating the number of the bottle collisions (a) and
amount of time to finish the task in seconds (b). The blue columns
are from the pre-evaluation records and the orange columns are from
the post-evaluation records.

Figure 8: Visualizations of the number of the bottles knocked down
during pre-evaluation (Left) and post-evaluation (Right). Colored
circles are the places where the bottles have been knocked down.
Colors show the frequency of that position where collisions hap-
pen. As the color goes from bule to red, the number of collisions
increases.

In order to measure whether the improvement of the user’s skills
in controlling a wheelchair is significant enough. We apply the
ANOVA test to compare the pre-evaluation data and post-evaluation
data. In our case, the factors are time duration and bottle number.
Therefore, we have applied two separate one-way ANOVA tests [4,
28] respectively. The one-way analysis of variance (ANOVA) is
used to determine whether there are any statistically significant
differences between the means of two or more independent groups.
ANOVA test is the most widely used statistical test for hypothesis
testing in factorial experiments. To prove that both the proficiency
and the precision of the wheelchair control increase after the VR
training, we apply two ANOVA tests separately for both the time
duration factor and bottle collision factor.

The time duration factor measures how efficiently the user can
control the wheelchair. The H0 hypothesis(null hypothesis) assumes
that there is no significant difference between the mean values of
the time to finish the pre-evaluation and the mean values of the time
to finish the post-evaluation. However, we can prove that there is a
statistically significant difference between the two. As calculated,
Pvalue = 0.003627 < 0.05, which means there is a statistically sig-
nificant difference in the time duration to complete the task before
VR training and after the VR training. The mean finishing time for
the pre-evaluation is 89.9 seconds and the mean finishing time for
the post-evaluation is 67.133 seconds. Therefore, we reject H0.



Figure 9: User’s path compared with the generated path: This figure
shows that during the VR training, users are trying to follow the
generated path, where the blue curve is the user’s path automatically
recorded by the computer, the red dotted curve is the generated path.
The significant consistency between the user’s recorded trajectory
and the prespecified path verifies that the user’s improvement of
performance is due to the generated training scenarios.

Bottle collision factor measures how precisely the user can con-
trol the wheelchair along a given path. As shown in Figure 8, the
left figure shows the number of bottle collisions during the pre-
evaluation and the right figure shows the number of bottle collisions
during the post-evaluation. We apply another ANOVA test to the pre-
evaluation data and the post-evaluation data. The H0 hypothesis(null
hypothesis) suggests that there is no significant difference between
the mean values of the number of bottle collisions during the pre-
evaluation and the mean values of the number of bottle collisions
during the post-evaluation. However, we can prove that there is a
statistically significant difference between the two. As calculated,
Pvalue = 0.003588 < 0.05, which means there is a statistically sig-
nificant difference in how precisely the users control the wheelchair
path before VR training and after. The mean number of bottle colli-
sions for the pre-evaluation is 4.13 and the mean number of bottle
collisions for the post-evaluation is 1.6. Therefore, we reject H0.

As shown in the two ANOVA test results, we can conclude that
both the proficiency and the precision of the wheelchair control
reject H0 and strongly validate our VR training effects. In other
words, the user has significant improvement in wheelchair control
reflected in two aspects: speed and accuracy. The program will
automatically record the path taken by the users in the virtual room.
As the user follows the specified path in the VR training scenario,
as shown in Figure 9, their improvement validates our approach
that through these automatically generated training scenarios, the
training effects are strong enough to be a substitute for other effective
training methods.

Besides the performance analysis, we designed a questionnaire to
ask the user how they felt during the study. The feedback is shown in
Figure 10. Most of the users thought that the wheelchair simulation
was realistic; the control of the VR wheelchair was natural; and
the VR training was comfortable, enjoyable, and effective. This
feedback is consistent with the statistical analysis results of the
users’ performance during the user study.

8 SUMMARY

We introduced an optimization-based approach for training
wheelchair skills, with emphasis on different aspects of the
wheelchair skills such as moving long straight distances, rotating
around objects, and passing through a narrow path. We developed
the optimization approaches to generate scenarios to achieve user-
specified training goals. In order to make the VR training more
immersive, we designed a physics-based wheelchair simulation al-
gorithm to map the motion of the real wheelchair onto the VR
wheelchair whose control is proved to be natural. In the end, we

Figure 10: This figure shows the feedback of 15 users after the nine
different VR training scenarios. Different colors represent different
questions in the questionnaire. Different numbers indicate the extent
to which the users agree. 1 indicates strongly disagrees while 5
indicates strongly agrees. The results draw a positive conclusion that
most users agree that their performance in maneuver a wheelchair
improved after the VR training.

have designed a user study to validate our approaches. From the
analysis results, we conclude that our approach improved the user’s
ability to finish the wheelchair tasks efficiently.

Limitations. Due to the VR hardware constraints, long-time training
tasks will result in the users’ visual fatigue and possible loss of
concentration. However, this is hard to solve at this moment because
there are gaps between virtual reality and reality that are physically
existing and not easy to avoid.

Future Work. To eliminate the impacts which are not from VR
training, in future user studies, we could include a control group that
did not perform the VR training. The control group should only have
the pre-evaluation and post-evaluation, without the training part.
Then we can validate the effectiveness of VR training by comparing
the VR group and the control group.

In order to increase the user’s interest during the whole training
process, we may introduce some penalty-reward mechanisms to
increase the level of entertainment. This will introduce some positive
effects with respect to the training efficiency, however, there are risks
of some unexpected negative effects as well, such as the user paying
attention to the game part more than the training process. This can
be an element of work to explore and study in future work.
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