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Figure 1: A user is practicing with a personalized training program synthesized by our approach to improving her driving habits
via virtual reality. Left: our system is constructed using a Logitech driving controller and a FOVE eye-tracking virtual reality
headset, via which the user’s driving and eye gaze data are collected for analyzing her driving habits. Right: A training program
(blue route) is synthesized by our approach for improving the user’s driving habits via different traffic events.

ABSTRACT

The recent popularity of consumer-grade virtual reality devices,
such as Oculus Rift, HTC Vive, and Fove virtual reality headset,
has enabled household users to experience highly immersive virtual
environments. We take advantage of the commercial availability of
these devices to provide a novel virtual reality-based driving training
approach designed to help individuals improve their driving habits
in common scenarios.

Our approach first identifies improper driving habits of a user
when he drives in a virtual city. Then it synthesizes a pertinent
training program to help improve the users driving skills based on the
discovered improper habits of the user. To apply our approach, a user
first goes through a pre-evaluation test from which his driving habits
are analyzed. The analysis results are used to drive optimization
for synthesizing a training program. This training program is a
personalized route which includes different traffic events. When
the user drives along this route via a driving controller and an eye-
tracking virtual reality headset, the traffic events he encounters will
help him to improve his driving habits.

To validate the effectiveness of our approach, we conducted a user
study to compare our virtual reality-based driving training with other
training methods. The user study results show that the participants
trained by our approach perform better on average than those trained
by other methods in terms of evaluation score and response time and
their improvement is more persistent.

Index Terms: Virtual Reality—Modeling and Simulation—Driver
Training Simulator
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1 INTRODUCTION

Driving safety is a critical issue throughout the world. According
to the Global Road Safety Status Report published by the World
Health Organization, although the road quality all over the world
has improved over the past decade, there are still 1.25 million deaths
caused by road traffic accidents every year. As the report shows, in
the past three years, the death toll of driving accidents has increased
in 68 countries. Noted by the director-general, Margaret Chan, of the
WHO, ”The loss caused by road traffic accidents is unacceptable.” It
is crucially essential to reduce traffic accidents.

There are many causes of traffic accidents, including poor road
conditions, bad weather and road emergencies. In particular, bad
driving habits, such as forgetting to signal before making a turn, or
failing to look at the rear-view driving mirrors before changing lane,
significantly increase the risk of accidents.

Conventionally, people learn about driving safety rules through a
handbook and from a coach before getting a driving license. Unfortu-
nately, bad driving habits could develop after one obtains his driving
license. With the development of virtual reality technologies, some
driving schools have introduced virtual reality-based driving training.
However, this type of training usually focuses on normal driving
circumstances only and does not consider the diversity of driving
habits. It could facilitate teaching people how to drive, rather than
correcting driving habits. Our novel personalized driving training
approach provides a solution for the latter.

Besides, existing virtual reality-based driving training usually
uses a virtual reality headset for visualization purposes only. The
user’s visual data such as his eye gaze during the simulation is not
collected, which could be very useful for analyzing user’s driving
habits. In contrast, our approach makes use of FOVE as shown in
Figure 1, a consumer-grade virtual reality headset equipped with
eye-tracking capabilities, for collecting the eye gaze data of the user
for analysis to synthesize a personalized training program.



Our work employs a novel optimization approach to synthesize
personalized training programs with traffic events relevant to im-
proving one’s driving habits. As Figure 1 shows, our approach can
synthesize a training route based on a user’s problematic driving
habits identified from a pre-evaluation. The user can learn to amend
his driving habits from different kinds of traffic events encountering
along the synthesized route. For instance, if the user tends not to
signal before turning, our optimization will synthesize a route which
frequently requires the user to practice signaling before making a
turn. Through adjusting the weight associated with each consid-
eration in the optimization, a variety of routes can be synthesized
with different numbers of turns, pedestrians and other road entities.
By this immersive virtual reality training experience, the user can
effectively improve his driving habits.

The major contributions of our work include the following:

• Proposing a novel optimization-based approach to synthesize
personalized training programs tailored for improving targeted
driving habits.

• Demonstrating that consumer-grade virtual reality headsets
with eye-tracking capabilities (e.g., FOVE) can be effectively
employed for virtual reality-based driving training. The col-
lected eye gaze data is highly applicable to analyze user’s
driving habits.

• Evaluating our approach by comparing with other training
methods in terms of improving driving habits persistently.

2 RELATED WORK

We provide a succinct overview of the traditional driving safety train-
ing approaches and review previous works about driving simulations
in virtual environments.

2.1 Traditional Driving Safety Training
We focus our discussion on safety training for correcting bad driving
habits. Studies found that bad driving habit is one of the most
common causes of motor vehicle accidents [20, 24]. Blows et al. [5]
examined the relationship between risky driving habits, prior traffic
convictions, and motor vehicle injury. They found that those who
have risky driving habits are more likely to have been injured while
driving over the same period. For novice drivers who do not have
good hazard perception [29] or elder drivers who do not have good
eyesight and response speed associated with age [2], the risk of
accidents is even larger.

Traditional methods of driving safety training include reading
driving handbooks, watching training videos and teaching by a
driving coach. Most people who have a driving license probably
have the experience being criticized by a driving coach for poor
driving habits such as forgetting to signal before making a turn or
forgetting to look at the rear-view driving mirrors. The major goal
of driving safety training is to amend problematic driving habits and
to reinforce preparedness for the emergency. However, a lot of rules
with texts or in videos are difficult to follow and remember during
daily driving.

Our approach plays the role of an individual driving coach, which
discovers mistakes and bad habits of a user during the driving au-
tomatically. A followed personalized training program is figured
out to correct mistakes and improve improper driving habits. The
engaging, immersive experience helps users remember the correct
driving habits, which they can apply to real driving. Compared with
traditional driving safety training methods, driving training in virtual
environments is much more safe, convenient and economical.

2.2 Driving Simulations in Virtual Environments
Driving simulation has been widely employed in different domains
for studies related to engineering, medicine, and psychology, as well
as driving training. Ruiz et al. [28] used driving simulator scenarios
for road validation studies. Lee et al. [19] used a driving simulator

Figure 2: Overview of our approach.

to analyze the risk of older drivers in encountering motor vehicle
crashes. Besides, some researchers even used driving simulators for
clinical studies like evaluating the sleepiness of drivers or training
the driving after stroke [1, 9, 15].

Research has been conducted on comparing driving on a road and
driving through a simulator. Underwood et al. [34] did an experiment
about hazard detection both for driving on the road and through a
simulator. Godley et al. [16], and Bella et al. [3] compared the speed
in the two driving scenarios. Besides, Trnros et al. [33] analyzed
driving behaviors in a real and a simulated tunnel. Findings from
these works show that driving through a simulator shares substantial
similarity with driving on a real road.

The promising use of driving simulations for mimicking real-
world driving has led researchers to devise more sophisticated tech-
niques for conducting driving simulations. Cremer et al. [10] worked
on the problems of driving scenario and scene modeling for virtual
environments based on the Iowa Driving Simulator (IDS). Bella et
al. [4] created a collision warning system for rear-end collision in a
driving simulator. With an effective driving simulator, researchers
can also conduct more sophisticated driving behavior analysis. Calvi
et al. [8] analyzed driver performance on deceleration lanes. Crun-
dall et al. [11] found that commentary training could improve re-
sponsiveness to hazards in a driving simulator. Musselwhite et
al. [23] assessed the improvement of older people’s driving behavior
via computer-based training packages. Roenker et al. [27] found
that simulator-trained drivers improved on the skills of changing
lane and using signals properly. Besides, some works show that
the driver’s visual attention also plays an important role in driving
simulation. Konstantopoulos et al. [18] used a driving simulator
to explore drivers eye movements under daytime, nighttime and
raining conditions. Friedland et al. [14] used a driving simulator to
test the performance of the glare-reducing device. Pradhan et al. [26]
used eye movements to evaluate the effects of the driver’s age on
risk perception through a driving simulator. Leeuwen et al. [21]
researched on the changes of gaze patterns of novice drivers during
30-minute simulator-based training.

A major advantage of using virtual reality and simulation for
driving training is that it enables practice under hazardous conditions.
Compared to previous works, especially the driving simulation for
training [6, 13], our approach focuses on training people to correct
problematic driving habits and to handle traffic events properly rather
than only teach general rules or car manipulations. Inspired by the
works of Huang et al. [17] and Darken et al. [12], our approach
employs an optimization framework to synthesize a personalized
training program. However, our optimization incorporates specific
design factors encoding the user’s driving habits identified from the
pre-evaluation. By controlling the weights associated with different
training objectives and design criteria, one can synthesize a variety of
personalized training programs with routes optimized for correcting
the problematic driving habits of the user. Inspired by the traffic
simulation works of Sewall et al. [30, 31], our approach designs a
rich variety of traffic events in a virtual environment, providing users
with highly realistic learning experiences.

3 OVERVIEW

Figure 2 shows the overview of our approach. First, the user under-
goes a pre-evaluation test from which his driving habits are recorded
and analyzed. Our system computes a pre-training score which
represents the driving performance of the user. Next, our optimizer
makes use of the driving habit analysis results to synthesize a person-
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Figure 3: Examples of street scenes.

alized route containing multiple traffic events designed for correcting
different problematic driving habits. The optimization considers a
dynamic cost that accounts for dynamic events occurring along the
route, as well as a static cost that accounts for static entities along the
route. The user then receives the training by driving through the syn-
thesized route in virtual reality. Finally, he takes a post-evaluation
test where his driving performance is re-evaluated and represented
as a post-training score. The post-training and pre-training scores
are compared to validate if there is any improvement in driving
performance.

4 VIRTUAL ENVIRONMENT MODELING

4.1 Driving Habits
In an evaluation, the user goes through a driving simulation using our
virtual reality setup. Throughout the simulation, the user needs to
handle multiple traffic events based on which his driving habits are
determined. The simulation lasts about three minutes. For example,
in an event about changing lane, the user needs to change lanes to
pass a slow-moving vehicle. As the user attempts to change lanes,
our system records the behavior of the user, to examine whether
he signals correctly and whether he looks at the rear-view driving
mirrors as determined from the eye-gaze data collected from FOVE
(Figure 10). As the evaluation test needs to solicit the comprehensive
driving habits of the user, the driving simulation contains all four
types of traffic events. Figure 4 shows a partial map of the city used
for evaluation with the regions of traffic events highlighted.

We use California Driver Handbook as reference to judge the
correctness of the user’s driving habits and controls recorded from
an evaluation. Table 1 lists six driving habits which our system
evaluates in our experiments. Each driving habit is scored between 0
and 1, and represented by si where i is the ID of the habit labelled in
Table 1. The driving habit score is computed based on the percentage
of times the user responds properly to a traffic event corresponding
to the driving habit.

In our experiments, a user takes a pre-evaluation, goes through
a personalized training program synthesized by our approach, and
then takes a post-evaluation. His pre-evaluation and post-evaluation
scores are compared to determine if the training leads to any im-
provement in his driving performance. Also, in each evaluation, we
record the response time of the user in handling a sudden event.

4.2 Traffic Element
Object. We construct virtual environments with Unity 5.6. Figure 3
shows examples of urban street scenes used in our experiments. We
obtain all models of road, building and car used in our experiments

Figure 4: The partial map of the city used for pre-evaluation. The
city contains 40 events categorized into four groups based on the
driving habits that they solicit.

# Driving Habits
1 Look at the rear-view mirrors before turning
2 Look at the rear-view mirror before changing lanes
3 Signal before turning
4 Signal before changing lanes
5 Stop for pedestrians
6 Decelerate when passing a crossroad

Table 1: Driving habits analyzed in the pre-evaluation test.

from the Urban City Pack and the Traffic Cars Pack in the Unity
Asset Store.

To simulate traffic, we control the motion of vehicles and pedes-
trians by scripts. The scripts control vehicles to steer, stop and turn,
similarly to the pedestrians motion. The iTween plugin is used to
compute smooth movement paths for vehicles.
Traffic Event. In our experiments, we include four kinds of com-
mon traffic events: changing lane, pedestrians crossing a road, stop-
ping of a frontal car and making a turn. These events are designed to
help the driver to amend the bad driving habits. The user’s driving
habits play an important role in handling traffic events which could
happen out of a sudden. For instance, in the event about pedestrians,
the driver may come across a pedestrian running across a road. This
event can help the driver to develop the driving habit about stopping
for pedestrians.

4.3 Urban Layout for Training

Figure 5(b) shows an urban layout we use for the training part, which
is generated from the Open Street Map of a block in Los Angeles
shown in Figure 5(a). The generated layout is composed of main
streets extracted from the input map. For simplicity, we do not use
the small streets from the input map in creating the layout.

We describe the details of our approach for generating the layout
for training using an input map (e.g., an Open Street Map). First, our
approach applies Hough Transform algorithm to detect and extract
main streets (yellow and orange in Figure 5(a)) on the input map.

Second, our approach divides the input map uniformly into cells.
In Figure 7(a), we divide the map into 36 uniform cells. A cell may
contain a straight road, a turn, a crossroad and so forth.

Third, using a database of road templates which covers different
road types such as two-lanes straight roads, four-lanes straight roads,
turns and crossroads, our approach matches each cell on the map
with the most similar road template. We use the following steps
to find a matching cell: (a) Judging which type of roads the cell
contains. (b) Detecting the directions of the roads in the cell. (c)
Choosing the road template with the most similar road type and
directions from the database. Figure 6 shows two examples about
the compatibility of road templates. An urban layout is generated
as each cell is converted into a road using the most-similar road
template. We define forty types of templates in total.
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Figure 5: An example of generating a layout map from Open Street
Map. (a) The map is divided into cells as the input. (b) Our ap-
proach detects the main streets (yellow and orange) through Hough
Transform algorithm and generates a layout map.

Fourth, buildings and trees are added to fill in the blocks. In this
step, our approach calculates the size of each blank region. Then it
randomly chooses buildings with appropriate sizes from the Urban
City Pack and adds them to the blank regions.

5 ROUTE SYNTHESIS

Our personalized training program is based on urban street scenes
showing several kinds of traffic events aimed at correcting different
driving habits. Our approach synthesizes a route which guides the
drivers to go through these events. The route is synthesized based
on the problematic driving habits of the user identified from the pre-
evaluation. We discuss the optimization framework in Section 5.3.
After the optimization, a personalized route is generated.

Figure 7 shows the route synthesis process, including two stages:

• Initialization. The layout map of the city is uniformly divided
into cells same as in Figure 5(b). For example, the map in
Figure 7(a) is divided into 36 cells, and each cell is represented
as an information node. The node stores the score information
and connectivity information used for the optimization.

• Optimization. The optimization begins and proceeds itera-
tively. At each iteration, a route is synthesized by sampling
over the map, and the quality of the route is evaluated accord-
ing to a number of cost functions. The optimization iterates
until a route which meets the design goals is synthesized. Fig-
ure 7(b) shows a synthesized route that can be used for training
via virtual reality simulation.

5.1 Representation

The information of each cell is stored as a node. A route is repre-
sented as a sequence of nodes. Each node has four scores: straight-
ness score, turning score, pedestrian score and car score, ranging
from 1 to 5. For example, if a cell contains lots of turns or crossroads,
the turning score is very high (e.g., 5). If the cell contains only a few
pedestrians, the pedestrian score is low. Besides, a node also stores
connectivity information about nearby cells for judging if the node
sequence can form a route.

5.2 Cost Function

We define a cost function Ctotal(R) to evaluate the quality of a syn-
thesized route R. Our cost function has two major components:
dynamic cost Cdynamic and static cost Cstatic. The dynamic cost en-
codes the factors related to the cars and pedestrians on the roads
that can move during the simulation. The static cost encodes the
factors related to the road layout, namely, the number of turns and
the straightness of the roads.

As the experiments of Brooks et al. [7] show, prolonged driving
simulations could lead to simulator sickness. Therefore, we also
include a regularization cost L(R) as a soft constraint. This cost

(a) Incompatible (b) Compatible

Figure 6: Compatibility between road templates. (a) A pair of in-
compatible road templates. (b) A pair of compatible road templates.

regularizes the length of the synthesized route such that it is not too
long, so as the training time. The total cost function is given by:

Ctotal(R) = wstaticCstatic(R)+wdynamicCdynamic(R)+wlengthL(R),
(1)

where R represents the current synthesized route composed of a
sequence of nodes like (r1,r2, ...,rn). Ctotal(R) denotes the total cost
function of the optimization. Cstatic(R) and Cdynamic(R) denote the
static and dynamic costs. L(R) is the regularization cost which is
defined as the length of the route R. wstatic, wdynamic and wlength are
the weights of the respective cost terms.
Static cost. The static cost encodes factors related to the road
layout. We can control the proportion of turns and straight roads
along the synthesized route by adjusting the parameters λS and λT
of this cost function:

Cstatic(R) = λSλT −
1

5|R|
(λS ∑

r∈R
FS(r)+λT ∑

r∈R
FT (r)), (2)

where |R| represents the numbers of nodes in route R; r refers to
a node in route R; FS(r) and FT(r) return the straightness score
and turning score of node r respectively. Essentially, the cost term
evaluates the sum of straightness scores, and the sum of turning
scores along route R. λS and λT are parameters for controlling the

importance of the straightness score and the turning score.
1

5|R|
is a

normalization term (the maximum value of scores FS(r) and FR(r)
is 5).
Dynamic cost. The dynamic cost encodes the consideration of
dynamic elements such as cars and pedestrians that appear in the
simulation. We can control the number of cars and pedestrians
appearing along the route by adjusting parameters λP and λC of this
function:

Cdynamic(R) = λPλC−
1

5|R|
(λP ∑

r∈R
FP(r)+λC ∑

r∈R
FC(r)), (3)

where FP(r) and FC(r) return the pedestrian score and car score of
node r respectively. Essentially, this cost term evaluates the sum of
pedestrian scores, and the sum of car scores along route R. λP and
λC are parameters for controlling the importance of the pedestrian

score and the car score.
1

5|R|
is a normalization term.

Weight and Parameter Settings. To generate a personalized
training program, the weights and parameters are set according to
the driving habit scores si of a user obtained from the pre-evaluation
test.

We set the weight of static cost as wstatic = 5− s1− s2− s3− s4,
since the first four types of driving habits are related to the static
layout of the roads. Similarly, we set the weight of dynamic cost
as wdynamic = 3− s5− s6, as the last two types of driving habits are
related to the dynamic events of the pedestrians and cars.

The parameters of λS,λT ,λP and λC are calculated corresponding
to the scores of straightness, turning, pedestrian, and car during the
pre-evaluation process.

λS constrains the numbers of straight roads, which tends to help
the user to form the habits of looking at the rear-view mirrors and
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Figure 7: An example of route synthesis. (a) The initial map consisting of 36 cells. (b) A route synthesized by our optimization with λS,λT ,λP
and λC setting as 1. (c) A route with more turns with λT adjusting from 1 to 3. (d) A route optimized to go through some nodes (yellow)
specified by the user.

signaling before changing lanes. As the traffic events about changing
lanes happen on straight roads, the user can receive more training
about the relevant driving habits with a larger λS. Accordingly,

λS = 3− s2− s4. (4)

λT constrains the number of turns, which helps the user to form
the habits of looking at the rear-view mirrors and signaling before
turning:

λT = 3− s1− s3. (5)

λP constrains to the number of pedestrians, which helps the user
to form the habit of stopping for pedestrians:

λP = 2− s5. (6)

Finally, λC constrains the number of cars, which helps the user to
form the habit of decelerating when passing a crossroad. To provide
the user with more opportunities to practice the habit of reducing
speed when passing a crossroad, λC is set as large to include more
cars at the crossroad if he does not possess the habit. Accordingly,

λC = 2− s6. (7)

We set the weight of regularization cost as wlength = 0.05 by de-
fault, yet it could be adjusted to increase or decrease the desired
length of the synthesized route. We show different syntheses gener-
ated by using different weights and parameters in our experiments.

5.3 Optimization
Figure 7 illustrates the route synthesis process. The start point and
end point of the route are pre-specified. The goal is to synthesize a
route that minimizes the total cost function. To explore the space of
possible routes effectively, an MCMC (Markov chain Monte Carlo)
optimization approach based on simulated annealing is applied.

At the initialization, a route which connects the starting point
to the end point is randomly sampled. At each iteration of the
optimization, a new route R′ is sampled by altering the current route
R as follows: a random pair of nodes ra and rb along the current
route is selected, and the sub-route connecting this random pair of
nodes like (ra, ..ri, ..rb) is replaced by another randomly sampled
sub-route like (ra, ..r j, ..rb). Our approach computes the sub-route
by randomly sampling the nodes sequence between ra and rb on the
premise such that the sequence of nodes can still form a route. Then,
the newly sampled route R′ is evaluated using the total cost function,
which may or may not be accepted depending on the acceptance
probability of R′ calculated by the Metropolis criterion:

Pr(R′|R) = min(1,e
1
T (Ctotal(R)−Ctotal(R′))), (8)

where T is the temperature of the simulated annealing process. T is
high at the beginning of the optimization, allowing the optimizer to
explore the solution space more aggressively; T is low towards the
end of the optimization, allowing the optimizer to refine the solution.

Changing the Importance Parameters. In this optimization,
we experiment with adjusting the importance parameters λS and
λT, which can change the proportion of turns and straight roads.
Figure 7(c) shows a route which has more turns. Before the opti-
mization, we adjust the λT from 1 to 3. Thus, the optimizer has a
higher probability to accept a route with more turns like this one.
Akin to synthesizing a route with more turns, we can use a larger λS
to synthesize a route with more straight roads.

As we adjust the parameters λP and λC in the dynamic cost func-
tion, we can also synthesize a route with different proportions of
pedestrians and cars. As Figure 8 shows, the blue line which rep-
resents the result synthesized with λC = 3 has more cars along the
route, compared to the orange line which represents the result syn-
thesized with λC = 1. Similarly, as Figure 8 shows, the green line
which represents the result synthesized with λP = 3 has more pedes-
trians along the route, compared to the red line which represents the
result synthesized with λP = 1.

By adjusting the weights, the designer can apply our approach
to synthesize a personalized training route with the desired traffic
events or layout of roads, to correct the targeted driving habits.
Passing Specified Locations. Sometimes, we may need to synthe-
size a route which passes specified locations. This can be achieved
by adding a hard constraint in the sampling process, to check if
the specified locations are included in the sampled route R′. If not,
the optimizer will directly reject the route R′. Figure 7(d) shows
an example where two locations (in yellow) are specified by the
designer as ones that the synthesized route must pass through. The
optimizer synthesizes a route that satisfies this hard constraint.

6 EXPERIMENTS

6.1 Implementation
We implemented our approach using C# and Unity 5.6. We ran our
experiments on a PC equipped with 16GB of RAM, a Nvidia Titan X
graphics card with 12GB of memory, and a 2.60GHz Intel i7-5820K
processor. The user experienced the simulation via the FOVE, a
consumer-grade eye-tracking virtual reality headset. The FOVE can
track the user’s eye gaze, from which our program checks if the user
has looked at the rear-view driving mirrors during the evaluation and
training.

6.2 Training and Evaluation
We evaluate the effectiveness of our virtual reality training approach
and compare with other training approaches.
Participants. We recruited 50 participants, whose driving experi-
ences ranged from 1 to 20 years. The participants were randomly
divided into 5 groups. Each group has 10 people and corresponds to
a training condition described below.
Training. We describe the training procedure under each of the
training conditions.

For the Personalized VR group, each participant was asked to
follow the synthesized personalized training route to drive for 15



Figure 8: Number of pedestrians and cars along two routes synthe-
sized using different weights λP and λC. Larger λP and λC result in
more pedestrians and cars along the route.

minutes. During the training, he encounters several types of relevant
traffic events specific to his driving habits identified in the pre-
evaluation and the corresponding warning message showed. For
instance, if the participant does not stop for pedestrians, traffic
events like a pedestrian running across the road will be triggered
when the user’s car enters the trigger zone. Besides, he will receive
a warning as ”slow down”.

For the Traditional VR group, each participant was asked to
take a traditional VR driving training, which akins to the design of
[6, 13]. Each participant is asked to drive along a random route for
15 minutes, where the route is not a personalized one. The other
parts of the program are the same with Personalized VR group.They
also receive a warning when improper driving behaviour happens.

For the Video group, each participant was asked to watch a driving
control and safety training video, which showed the correct driving
controls when the drivers encountered different types of traffic events
we considered in our work. The participant could watch the video
for as many times as he wanted to remember the details of the
instructions within 15 minutes.

For the Manual group, each participant was asked to read a
driving handbook. The handbook provided details and pictorial illus-
trations about the correct and safe driving habits. Each participant
could read the manual for 15 minutes.

For the None group, the participants did not go through any
training.
Post-Evaluation. Each participant was asked to do two post-
evaluation tests where he would drive a car on the urban streets
via our virtual reality setup. The simulation for each post-evaluation
needs about three minutes. The first test was done right after training.
The second test was done a week after training. Before doing a test,
no matter which training condition the participant went through,
he was asked to familiarize himself with the control of the FOVE
virtual reality device in a warm-up session until he felt familiar with
the control. This typically took about 5 to 10 minutes.
Metrics. We collected the following metrics to evaluate and analyze
the performance of the participants in the tests:

• Evaluation Score: We recorded the problematic driving
habits, such as not signaling before making a turn and not
reducing the speed when coming across a pedestrian. Each
problematic habit reduces its associated score as described
in Section 4.1. The higher the scores, the better the training
effect.

We also tracked if the user looked at the rear-view mirror before

Figure 9: The results of evaluation scores in our user study, obtained
from a pre-training evaluation, a post-training evaluation and an eval-
uation conducted one week later. The value of each bar represents
the mean.

turning or changing lanes. Figure 10 shows a screenshot of
the rear-view driving mirrors with the eye gaze points. To
achieve this, our approach tracks the participant’s eye gaze
using FOVE.

• Response Time: We measured the response time, which re-
flects whether participants are sensitive to emergencies. The
response time is defined as the time interval between two time
stamps: an event starting to happen and the participant starting
to response to the event. For instance, when a participant is
passing a bus, a pedestrian runs out in front of the bus. The re-
sponse time is the time interval between the pedestrian starting
to run and the participant starting to brake.

7 RESULTS AND DISCUSSION

We discuss the results of different training approaches. Specifically,
we evaluate the participants’ performance in terms of evaluation
score and response time, before and after the training. Figure 9
shows the scores the participants obtained after different types of
training.

7.1 Evaluation Score
Our approach detects six types of driving habits via Logitech driving
controller and Fove in the evaluation. The calculation of evaluation
score is the same with Section 4.1.
Pre-Evaluation Results. The green bars in Figure 9 show the
pre-evaluation scores of the 5 groups that would undergo different
training conditions. The average scores of different groups are close,
showing that each group of participants had similar levels of driving
skills before training. This group of results is the baseline of our
experiments.
Post-Evaluation Results. The blue bars in Figure 9 show the
evaluation scores after training. The Personalized VR group got
the highest scores (M=4.6, SD=0.56), followed by Traditional VR
group (M=3.8, SD=0.75), Video group (M=3.65, SD=0.78), Manual
group (M=3.3, SD=0.75) and None group (M=3.25, SD=0.92). The
results suggest that the Personalized VR approach is more effective
than the other approaches in terms of improving driving skills.

It is interesting to look at the standard deviations of the results
after training. In general, the Personalized VR group performed con-
sistently better as reflected by smaller standard deviations (SD=0.56),
while those trained with other conditions had more fluctuating perfor-
mance as reflected by larger standard deviations. This may suggest
that the training with Traditional VR group(SD=0.75), Video group
(SD=0.78), Manual group (SD=0.75) are not efficient for some
participants. On the contrary, the standard deviation of the scores
received by the participants trained with our approach is smaller,
where most participants got improvement in the training.



Figure 10: The user’s eye gaze tracked by the FOVE virtual reality
headset. Our system detects whether the user has looked at the
rear-view driving mirrors (red). His eye gaze (green) is recorded
from the FOVE virtual reality headset for analysis.

We also did the T-test between our approach and other four meth-
ods. We used an alpha level of 0.05 for all statistical tests. The results
show that the Personalized VR group got higher evaluation scores
(M=4.6, SD=0.56) than Traditional VR group (M=3.8, SD=0.75,
p=0.016), Video group (M=3.65, SD=0.78, p=0.007), Manual group
(M=3.3, SD=0.75, p=0.0004) and None group (M=3.25, SD=0.92,
p=0.001) in statistics. It indicates that the training effect of our
approach were significantly greater than other training methods.
Results after a Week. According to the Ebbinghaus Forgetting
Curve, which models the decline of memory retention against time,
humans generally forget about 75% of knowledge they have learned
after one week. Thus, to investigate how well the participants re-
tained the knowledge they learned under different training condi-
tions, we conducted another evaluation test one week after the train-
ing session.

The yellow bars in Figure 9 show the results one week after
training. The participants who underwent the Personalized VR
training achieved similar performance as they did one week ago
(M=4.45, SD=0.55). The performances of the participants trained by
the Traditional VR approach (M=3.55, SD=0.69), a video (M=3.3,
SD=0.71) or a safety manual (M=3.1, SD=0.56) dropped in general,
while they still showed some improvement over those who were
untrained (M=3.05, SD=0.57).

7.2 Response Time
Figure 11 reports the mean of the response time obtained in the pre-
evaluation (green), post-evaluation (blue) and evaluation conducted
one week after the training(yellow). Our system records 3 response
times of participant per evaluation.

The difference between pre-evaluation and post-evaluation illus-
trates the effect of training. The Personalized VR group has the
greatest improvement on response time with reduction from 0.79
to 0.58 seconds, comparing with 0.80 to 0.65 seconds for Tradi-
tional VR group, 0.92 to 0.76 seconds for Video group, 0.85 to 0.73
seconds for Manual group, and 0.83 to 0.72 seconds for None group.

The standard deviation of Personalized VR group (SD=0.16) is
also smaller than Traditional VR group (SD=0.81), Video group
(SD=0.87), Manual group (SD=0.86) or None group (SD=0.69) af-
ter training. Since during the pre-evaluation process, if the users have
longer response time, they will get lower scores on some driving
habits (e.g., stop for pedestrians). The lower scores on the corre-
sponding habits lead to synthesized routes with more relevant traffic
events by our optimization. Thus, our approach is efficient for most
participants on the aspect of shortening response time.

In the T-test about the response time, we still set the alpha level
as 0.05 for all statistical tests. The Personalized VR group has
shorter response time (M=0.58, SD=0.16) than Traditional VR
group (M=0.65, SD=0.81, p=0.04), Video group (M=0.76, SD=0.87,
p=0.004), Manual group (M=0.73, SD=0.86, p=0.0005) and None
group (M=0.72, SD=0.69, p=0.005) in statistics. We can find from

Figure 11: The results of response time in pre-evaluation, post-
evaluation, and evaluation one week later. The value of each bar
represents the mean. The shorter the bar, the shorter the mean of
response time, hence the better the training effect.

the results that the improvement about response time of our approach
were significantly greater comparing with other training methods.

The yellow bars in Figure 11 show the response time in the
evaluation of one week after training. The Personalized VR group
maintained almost the same level as post-evaluation. Whereas the
other groups show increasing on the response time, and their re-
sponse time almost fell to the level of those who were untrained.
The Personalized VR training approach leads to a more persistent
training effect.

8 SUMMARY

We introduced a personalized, virtual reality-based approach for
improving driving habits, which can more effectively train a user
to possess good driving habits and to become more attentive and
responsive, compared to traditional training approaches.

Additionally, there are several major benefits of using a person-
alized virtual reality training approach over traditional approaches.
First, the realistic, immersive training experience offered by virtual
reality allows the participant to learn by practicing directly, hence
avoiding the gap between theory and practice in traditional training
approaches. We believe that our virtual reality training approach
can complement traditional training approaches. Second, our ap-
proach synthesizes a personalized training program based on the
pre-evaluation results. It plays the role of an individual driving
coach, who can figure out a targeted solution for an individual to
amend his bad driving habits. Third, different from the handbook
and video training which lack interactivity, a virtual reality training
approach which is often more appealing. By conducting the virtual
reality training in a serious game setting, the participant may feel
more motivated to receive training.
Limitations. As the participants did not go through real-world
evaluations, we can not firmly conclude about their performance in
real driving after different training. However, we believe that our
experiments and results are still meaningful and indicative because
our experiments were conducted in realistically-modeled scenes and
through a driving controller that mimics a real-world driving setup.

Besides, our VR simulation is an uni-sensory system, which only
considers the vision sense. Although other senses (e.g., auditory,
tactility) have impacts on driving, the dominance is far lower than
vision [32]. Under VR environment, we can not ensure the user
has the same emotion state with real driving because the user is not
afraid of crash anymore. We may add a real driving evaluation in
future work to avoid this factor.

Our approach has considered six common types of driving habits;
future extension should include other types of driving habits that
could be related to traffic accidents. In our current setting, all the
events about cars and pedestrians are controlled by scripts, which
happen only when the user enters the trigger zones. The AI scripts



could potentially be replaced by agent models that simulate the
realistic movement of pedestrians and cars [36] driven by real-world
data [35]. As we used FOVE, a consumer-grade VR device, to
perform the experiments, the immersiveness offered could be less
compared to that offered by a professional-grade setup like a CAVE.

We believe our personalized virtual reality driving training could
complement conventional driving training by a coach. Using our
approach, the user can focus on reinforcing certain driving habits
according to his areas of weakness, and that he can practice repeat-
edly at a low cost. However, we believe that practicing with a coach
on real roads is necessary for the user to master all the basic driv-
ing skills for handling real-world scenarios, some of which are still
difficult to simulate.
Future Work. It will be interesting to explore using a more re-
alistic 3D street scene to perform our experiments. For example,
one may use a 3D-reconstructed street scene for conducting evalu-
ation and virtual reality-based training. As the resolution of such
3D-reconstructed scenes continues to grow, a virtual reality-based
training in such scenes could be very realistic. One may also use a
professional 3D modeling engine like the CityEngine to procedurally
generate a realistic-looking city [25] for evaluation and training.

Besides the present work on car driving training, our approach
can also be generalized to other training targets, e.g., aircraft driv-
ing, safety training [22]. Similarly, the approach can evaluate the
performance of a user at first and find their shortcomings. Then a
training program can be generated via optimization. Inspired by Xie
et al. [37], we can even synthesize training program for exercising.
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