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Figure 1: Taking as input a 3D virtual store scene and some virtual products as shown on the left, our approach optimizes the
product placement considering both product exposure and spatial constraints. A user navigates the virtual store with the optimized
product placement in virtual reality as shown on the right.

ABSTRACT

The recent popularity of consumer-grade virtual reality devices has
enabled users to experience immersive shopping in virtual environ-
ments. As in a real-world store, the placement of products in a virtual
store should appeal to shoppers, which could be time-consuming, te-
dious, and non-trivial to create manually. Thus, this work introduces
a novel approach for automatically optimizing product placement in
virtual stores. Our approach considers product exposure and spatial
constraints, applying an optimizer to search for optimal product
placement solutions. We conducted qualitative scene rationality and
quantitative product exposure experiments to validate our approach
with users. The results show that the proposed approach can synthe-
size reasonable product placements and increase product exposures
for different virtual stores.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—;——Computing methodologies—Virtual reality

1 INTRODUCTION

Virtual reality (VR) retail is an emerging shopping experience, offer-
ing many advantages over conventional shopping. It can be regarded
as an extension of online shopping, offering benefits such as reduc-
ing the overall operating costs of retailers and enabling customers
to shop without having to leave their comfortable couches at home.
The COVID-19 pandemic may accelerate the shift towards a more
digital shopping world [17]. The concept of Metaverse may also
spur the progress of VR retail [1], encouraging the community to
explore how emerging VR technologies may shape future shopping
experiences.

In contrast to traditional online shopping, VR retail enables cus-
tomers to shop in innovative ways [42]. VR retail offers immersive
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shopping experiences and enables customers to virtually try on items
akin to shopping in real stores. The physical analogies help users
act out with concepts already understood in real stores, reducing the
cost and time of learning something new and unfamiliar. In addi-
tion, a virtual store could be tailored through computational design
approaches to specific user’s preferences and interests, potentially
enhancing shoppers’ satisfaction, improving shopper’s engagement
with brands, and bringing more revenues to retailers.

Designing the product placement is vital for a VR store creation
task. Like in a traditional brick-and-mortar store, a well-designed
placement contributes a lot to a positive shopping atmosphere, lead-
ing to higher consumer satisfaction, better consumer relationship,
and more importantly, boosting product sales [20]. The task is
usually accomplished manually by designers according to their pro-
fessional knowledge of the store’s targets, considering the spatial
constraints and product exposure in the 3D virtual scene. Retailers
need to change their product placement to display new products regu-
larly and keep the stores fresh. However, designing and maintaining
a VR store incurs recurrent efforts and costs.

To this end, we propose to automate the product placement for
VR stores, facilitating the intuitive and quick adjustment of the
product placement for retailers. Although the placement design
considerations may vary from designer to designer, there are still
some common and key rules to follow in computational design. One
key factor to consider is enhancing the exposure time of products to
gain more customers’ attention. Some market studies have shown
that the attention of customers in a store is highly relevant to their
purchase behaviors [23,24]. Because of the profit-oriented feature of
stores, we consider generating the product placement with respect to
the overall product exposure. Another consideration is introducing
spatial constraints to improve the appeal of the product placement.
For example, products in a virtual store are placed at spacious loca-
tions to motivate shoppers’ buying behaviors [31]. Thus we design a
computational framework that encodes the above two considerations
to optimize a product placement automatically.

More concretely, given a virtual store scene and products to be
displayed, we formulate the product placement synthesis as an opti-
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mization problem. Against a total cost function that encodes spatial
constraints and product exposure constraints, the optimizer searches
for a placement iteratively through the Markov chain Monte Carlo
algorithm. To experiment with our approach, we conducted a qual-
itative scene rationality evaluation experiment and a quantitative
exposure evaluation experiment to validate the virtual store designs
synthesized by our approach. Moreover, we show our approach’s
capability for generating product placements for different types of
virtual stores. The results show that our approach enhances product
exposure and optimizes product placement more effectively than
alternative approaches. The main contributions of this paper are
summarized as follows:

• We propose a new problem statement for optimizing product
placements in virtual stores.

• We devise a computational design approach for synthesizing prod-
uct placements in VR stores driven by product exposure prediction
and spatial constraints.

• We validate the effectiveness of the proposed approach by con-
ducting user studies on the synthesized stores to investigate spatial
rationality and product exposure.

2 RELATED WORK

We discuss the background and prior VR shop applications. Addi-
tionally, we review the previous works on visual attention and scene
synthesis, which inspire the constraints employed in our framework
to guide product placement optimization, product exposure, and
spatial constraints.

2.1 Virtual Reality Shopping
Virtual Reality shopping applications allow customers to shop in a
VR environment, replicating in-store experiences. Prior researches
have explored and facilitated virtual store design in different ways,
for example, through design strategy [26], interaction mode [36], and
application [40]. Xi and Hamari [42] reviewed the latest research and
development in VR shopping; the potential VR shopping themes;
and the research gaps that need to be filled to realize VR shopping.

VR systems have been applied for marketing by companies such
as eBay [11]. There are also research efforts in this direction. Sev-
eral works explored certain factors for predicting shopping behaviors
based on 3D simulation technology. Using 3D simulation technol-
ogy capable of offering a realistic virtual experience, they tested
their hypotheses. Jiang et al. [22] used 3D computer graphics as
experimental stimuli to investigate the effect of visual complexity
in a fashion store on affective and behavioral responses. Alawadhi
et al. [2] ran a virtual experiment for customers to investigate the
essential effects of the allocation of products on perceived crowding,
which indirectly but significantly affects the shopping behaviors of
customers. Creating virtual stores manually is costly. Hence the
design process could benefit from automation. Compared with pre-
vious works, we take account of both the product exposure and the
spatial constraints to optimize product placement automatically.

2.2 Visual Attention
Recent works inspired our exposure formulation in visual attention
studies. Visual attention refers to the ability of the human visual
system to rapidly select the most relevant information in the visual
field. One of the most popular visual saliency models was proposed
by Itti et al. [21], namely, the data-driven attention model. It com-
putes the multi-scale feature contrasts of input images by using a
difference of Gaussian and linearly combining the feature conspicu-
ous maps to produce a master saliency map. After nearly 20 years
of development, researchers have proposed many computational
visual attention models [41], including Bayesian surprise models,
task-driven models, etc.

Eye-tracking technology with visual attention models finds appli-
cations in areas such as skill training, pictorial database query, and

advertising design. Lang et al. [27] used eye-tracking headset to
improve driving habits. Li et al. [28] collected visual attention to
evaluate the earthquake safety drill effect. Tabbaa et al. [38] captured
eye-tracking behavior in 360-VEs and presented a novel affective
dataset. Meyer et al. [33] combined head- and eye movement fea-
tures to recognize activities. Chang et al. [7] detected visual attention
to record visual content of personal interest. An obvious application
of eye-tracking and visual attention models is to enhance advertising
design, e.g., predicting users’ attention when browsing complex web
pages [10]. Alghofaili et al. [3] utilized visual attention models to
find the best panel placement by maximizing the likelihood that the
panels would be seen in a 3D room. Their focus is on placing 2D
elements in virtual environments such as museums. In our approach,
we devise an optimization-based model for product placement to
satisfy some design constraints specific to placing products (e.g.,
the visual balance). Furthermore, we added a perceptual study as a
means of validating our approach.

We applied visual attention models to the scene synthesis problem,
optimizing 3D visual elements in a 3D virtual environment. We
obtained the product exposure data of 3D virtual products through
experiments via a FOVE eye-tracking virtual reality headset. Subse-
quently, the data were utilized for training a regressor for predicting
product exposure.

2.3 3D Scene Synthesis

Automatic 3D scene synthesis is an active research topic. Re-
searchers have developed approaches for synthesizing 3D scenes,
layouts, and virtual environments, such as workspace [29], furniture
layouts [45], and partial scenes [14]. Zhang et al. [46] provides a
recent review on automatic 3D indoor scene synthesis.

Distinct from coarser-level layout synthesis, we focus on optimiz-
ing fine-level item placement. Majerowicz et al. [30] presented a
data-driven method specifically designed for artifact arrangement,
which automatically populated empty surfaces with different believ-
able arrangements of artifacts in a given style. Fender et al. [13]
presented a system that empirically analyzed user behaviors in a
space and automatically suggested positions and sizes.

Product placement is one application of scene synthesis. Com-
pared to typical indoor synthesis problems, store synthesis should
consider not only the basic scene layout but also how to place each
product reasonably and attract attention. To overcome the challenge
of designing a virtual store, we encode the rational consideration
of a general scene, human knowledge about product arrangement,
and the estimation of product exposure into our optimization-based
approach.

3 PRODUCT PLACEMENT OPTIMIZER

Given a virtual store scene and some virtual products as input, our
approach employs an optimization algorithm to find a desired prod-
uct placement solution for the virtual store. The framework of our
approach is illustrated in Fig. 2. We use a clothing store as an illus-
trative example to facilitate our technical discussion. Note that our
framework can be generalized to synthesize other types of stores, as
demonstrated in the experiments.

This section discusses the optimization process to generate a
product placement with high product exposure and a rational product
layout in a virtual store.

The optimizer consists of a total cost function and an optimizing
algorithm. The total cost function is devised to evaluate each gen-
erated product placement, which is informed by some store design
articles and an interview with experts [12, 19, 39]. It consists of an
exposure cost and a spatial cost. The product exposure term, which
is based on a Random Forest regressor trained to predict shoppers’
gaze duration on products, guides the optimizer to improve product
exposure in the virtual store. The spatial term encodes the design
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Figure 2: The overview of our approach. (a) The input is an empty virtual store scene and 3D virtual products. (b) Our approach optimizes the
product placement against exposure and spatial cost terms iteratively. The exposure term is defined on the basis of exposure prediction. The
spatial cost encodes three constraints, i.e. interval, visual balance, and crowdedness. (c) The output is an optimized product placement.

priors for arranging products reasonably to improve shopping ex-
periences by avoiding crowdedness, ensuring even distribution and
keeping visual balance.

Formally, a product placement is defined as P = {pi = (li,θi), i ∈
{1,2, · · · ,N}}, where N is the number of products. For the i-th
product, li = (xi,yi,zi) is the coordinates of its center, representing
the product’s location; θi is the angle of the front surface relative
to the nearest wall plane, representing the product’s orientation.
The front surface means the surface the retailer wants to show to
customers. The wall plane is defined as the back of the product
showing area vertically relative to the access area.

The total cost is written as:

CTotal(P) = ωExposureCExposure(P)+ωSpatialCSpatial(P), (1)

where CExposure and CSpatial are exposure cost and spatial cost, re-
spectively; ωExposure and ωSpatial are their weights and are set as 0.5
empirically, considering the importance of the two costs is equiva-
lent. The details of the cost terms are in the following.

Against the cost function, the optimizer searches for an optimal
product placement iteratively through an MCMC (Markov Chain
Monte Carlo) algorithm [4].

3.1 Exposure Cost
Considering that products should be placed to attract more exposure
from the customers [19], we design the exposure cost term to eval-
uate the received exposure under the current placement. We train
a regressor to estimate the product exposure of a virtual product
placed at a certain location. On the basis of the regressor, we define
the exposure cost over all products to guide the optimizer to select a
solution with a higher predicted overall exposure:

CExposure(P) = 1− 1

∑
N
i=1 wi

N

∑
i=1

wiei, (2)

where ei is the predicted product exposure of product i at its current
location, in proportion to the product exposure duration. wi ∈ [0,1]
is an exposure weight for the i-th product and is set as 1

N by default.
This weight is designed to enable adjustment, i.e. increasing the
exposure consideration for a specific product. A lower cost value of
CExposure(P) means a higher total product exposure duration.
Product Exposure Regressor. To predict the product exposure
for each virtual product, we apply a data-driven approach, Ran-
dom Forest regressor [37] to learn the relationship between product
exposure and a feature vector encoding product attributes and its
location attributes. The training process and prediction process are
implemented by the scikit-learn library. Fig. 3 visualizes predicted
product exposures in a store.
Features. Per a consultation interview with store staff and interior
designers, as well as product placement references [34], we extract

1 (high)

0 (low) 

Figure 3: Visualization of predicted product exposures for the items.
A redder color refers to a higher exposure value.

four relatively general features to train the regressor. The features
cover the products’ intrinsic attributes and relative position in a
scene, which can also be extracted from unseen products easily.

(1) Size. Previous works suggested that the size of a product
affects the user’s attention during the shopping process [47]. In
order to extract the size, we first calculate a tight bounding box with
respect to the product’s dimensions. Then, we take the length, width,
and height of the bounding box as the size feature.

(2) Texture. Inspired by previous findings that the product’s color
affects customers’ purchase decisions [18], we use texture intensity
as a texture feature. It is defined as how much light a product reflects.
The higher the value is, ”the brighter” the product appears to be. We
define r, g, and b as the average red, green, and blue values of all
the pixels in the product texture image. The intensity is obtained as
I = (r+g+b)/3 akin to [16]. These give us four feature values to
measure the product intensity.

(3) Height from the Floor. Previous works found that the height
of a product from the floor could affect the attention it receives [6].
This feature could reflect how well the product can be viewed in the
scene. It is defined as the relative height of a product from the floor.

(4) Distance from Landmarks. Literature [5] suggested that
brands in the horizontal center receive more visual attention. Hence
we use the shortest distance between the product and any entrance,
as well as the distance between the product and the center of the
store, as the distance from landmarks feature. Note, the designer
could also include distances from other places of interest in addition
to the entrances and the store center.
Training Data. We obtained training data through a data collection
process. The placement was generated randomly at the beginning.
Participants wore a FOVE eye-tracking VR headset for navigation.
A capsule collider with a virtual camera on the top is used as the
participant’s avatar. The participant moved in the virtual scene by
a gamepad to control the moving direction of the capsule collider.
While the view of the observation, i.e., the virtual camera’s orienta-
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Figure 4: Left: An input 3D scene. Right: The placement regions.
Each red rectangle refers to a distinct placement region.

tion, is synchronized with the direction of the headset. Participants
always start walking from a predefined entrance position. We re-
quested the participants to walk and look around in the store as if
they were shopping in an actual store. Then the participant’s move-
ment and gaze data during the navigation were recorded. FOVE
provides a visual frame rate of 70 fps with less than one-degree
tracking error. We calibrated the headset before each test.

23 participants were recruited to gather the product exposure data,
most of whom were students and college staff aged 19 to 30. Partic-
ipants reported normal or corrected-to-normal vision. We created
three virtual scenes, namely, clothing Store, grocery Store, and toy
Store, referring to real-world shop layouts. Each participant tests
three types of stores in a random order. Participants were given 5
minutes in each store to view products, counting as one session. Af-
ter one session, we summarized a virtual product’s viewing periods
as its product exposure.

In the training process, each data sample input refers to a feature
vector of a product with normalized exposure time. To alleviate
the bias of individual observations and habits, we use normalized
exposure time rather than absolute exposure time as input.

The original exposure time is normalized to [0,1] based on the
maximum and minimum exposure time. We use the exposure time
of the product with the largest amount of gaze duration received
from the participants in every single data collection session as the
maximum exposure time, and use 0 as the minimum exposure time
for normalization. For example, for a participant navigating a virtual
store in a session, if the exposure time of a T-shirt was 10.15 seconds,
and the exposure time of the product (e.g., a dress) that received
the maximum exposure was 20.30 seconds, then the normalized
exposure data of the T-shirt is 0.5.

3.2 Spatial Cost
We include a spatial cost, which evaluates how reasonable the prod-
ucts are placed, to encourage the optimizer to favor solutions with a
rational product layout. The spatial cost incorporates the following
three spatial constraints: (1) placing products with equally-spaced
intervals on shelves; (2) keeping visual balance by placing large
products at lower locations and small products at higher locations;
and (3) avoiding too many products on one shelf. These constraints
were devised by consulting 5 experts, including store staff and inte-
rior designers, and with reference to store design books [12, 39].

To encode these considerations, we define the spatial cost as:

CSpatial(P) = λiCi(P)+λvCv(P)+λcCc(P), (3)

where Ci, Cv, and Cc are the interval cost, visual balance cost; and
crowdedness cost, respectively; λi, λv, and λc are their correspond-
ing weights set as 0.3, 0.3, and 0.4, by default. We slightly favor the
crowdedness cost because it affects the number of goods within one
areas, and then further affects the users’ overall experiences.
Interval. A layout with an even product placement helps relieve
shoppers’ negative feelings due to clutter [39]. Thus, we design
an interval cost to encourage the optimizer to choose a solution
with even intervals among products. The store scene is divided into
regions R = {rm}. Each region rm refers to a surface capable of
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Figure 5: Examples placements with a different cost value of (a)
interval cost, (b) visual balance cost, and (c) crowdedness cost.

supporting products as shown by the red rectangles in Fig. 4. For
example, products can be placed on a table or hung on the shelves.
This step can be done manually by the user or processed by some
furniture affordance prediction algorithms [15].

The interval cost is defined as:

Ci(P) =
1
|R|

|R|

∑
m=1

1
Nm

σ
2
m, (4)

where |R| is the number of regions. Assume D(li, li+1) is the space
intervals of adjacent products calculated by the Euclidean distance
between them. σ2

m is the variance of intervals D(li, li+1) in region
rm. Nm is a normalization constant and is set as the square of the
longest diagonal of the rm region.
Visual Balance. A common assumption in placing products is to
keep visual balance, i.e. placing larger products at lower places.
Considering larger products carry stronger visual weights [32], we
use the front face area of a product’s bounding box to define the
visual balance cost as:

Cv(P) =
1
N ∑

i

1
Nv

aihi, (5)

where hi is the product’s height (from the product’s bottom to the
ground); ai is the area of the front face of the bounding box of
product i; Nv is a normalization constant defined as the product of
the tallest shelf’s height and the largest front face’s area.

Since aihi increases when large products are placed high, placing
large products at lower shelves implies a lower cost. Fig. 5 (b) shows
an example placement with a smaller visual balance cost (top) and a
placement with a larger visual balance cost (bottom).
Crowdedness. Previous research found that products placed at
spacious locations motivate shoppers’ buying behaviors [31]. This
implies that all regions should have similar product placement crowd-
edness so that the products would not pile up in one region, which
may affect the shopping experience.

We devise the crowdedness cost to model the difference in occu-
pancy rates across all regions. A solution with less difference will
be preferred. The cost is defined as:

Cc(P) =
1

Nc

|R|−1

∑
m=1

|R|

∑
n=m+1

∣∣∣∑i si
Sn

− ∑ j s j
Sm

∣∣∣ , (6)

where |R| is the number of regions. Nc =
|R|(|R|−1)

2 is the normal-
ization parameter. Sn and Sm are the areas of the n-th region and
m-th region, respectively. si and s j are the areas of the i-th and j-th
objects in the n-th region and m-th region.

Fig. 5 (c) shows an example. Compared to the bottom placement,
the top placement puts more products in a larger shelf.
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3.3 Optimization

Based on the defined total cost, we use a MCMC optimization
framework to search for reasonable product placement. To speed up
the optimization, we assume that one type of products is placed in
one region. So we group products according to their categories at the
beginning. Then, we initialize the virtual store scene randomly, that
is, the 3D products are randomly placed in the placement regions.
Each placement region is only filled with products of the same type.

At the beginning of the optimization, each virtual product is
initialized with a random position and orientation. At each iteration
of the optimization, a new product placement P′ is proposed. To
explore the solution space effectively, we define three types of moves
to propose the new placement:
Product Translation. Select and move a product slightly based on
its current location within its current placement region. This move
adjusts the configuration of the placement within a local region.
Product Swapping. Swap the location and orientation of a
randomly-selected product pair. This move enables more rapid
exploration of the solution space and prevents the optimizer from
being stuck at local minima.
Group Swapping. Swap two randomly selected groups. Two groups
of products are selected at random and their placement regions are
interchanged. This move induces a rearrangement of the placement.

Each proposed move is accepted with the following probability
based on the Metropolis criterion [8]:

α
(
P′|P

)
= min

(
1,

f (P′)

f (P)

)
, (7)

where f (P) = e−
1
t CTotal(P) and t is the temperature parameter for

simulated annealing [25]. The optimization proceeds iteratively. We
set t = 300 empirically at the beginning of the optimization, allowing
the optimizer to explore the solution space more aggressively with
a high temperature. The value of t drops by 0.5 every iteration of
the optimization until it reaches 1, allowing the optimizer to refine
the solution near the end of the optimization. We terminate the
optimization if the absolute change in the total cost value is less
than 5% over the past 50 iterations. Obtaining a solution in our
experiments required up to 500 iterations.

4 PERCEPTUAL STUDY

We conducted perceptual studies to evaluate the effectiveness of
our approach and investigated whether our synthesized placement
provides immersive shopping experiences and induces product expo-
sure. We conducted three user studies: (1) a general evaluation for
validating scene rationality; (2) an exposure evaluation for validating
the exposure enhancement effectiveness; (3) a spatial constraints
evaluation for validating the effectiveness of spatial constraints.
Participants. We recruited 15 participants, including 8 males and
7 females aged from 18 to 50. All the subjects reported normal or
corrected-to-normal vision with no color blindness. Note that none
of the participants took part in the previous training data collection
process.
Procedure. Each participant was asked to navigate different scenes
and observe the products for a given period of time via a FOVE VR
headset with a gamepad, akin to the training data collection process.
Before the evaluation, each participant went through a 5-minute
warm-up session to get familiar with the navigation. A VR warm-up
application allowed participants to learn the basics of operating a
FOVE VR headset.

Participants experienced three types of scenes one by one, i.e.
clothing store, toy store, and grocery store. For each type, the re-
sults of all four compared approaches were given to the participants
randomly to avoid any carryover effects. In each experiment, par-
ticipants spent max 5 minutes navigating each scene. Instructions

Table 1: Statistics of different scenes.

Scenes No. of
products

No. of
product types

No. of
shelves

Clothing Store 38 4 6
Toy Store 102 10 8
Grocery Store 290 40 13

for each experiment were provided via a window in the VR envi-
ronment. The participants read the instructions. When they were
ready to proceed to the next window, they could use the controller
to enter the experiment scenes. During the experiment, the partici-
pants were not explicitly told by which approach the current store
was synthesized. Participants were told to report any sickness or
discomfort with the apparatus at any point during the experiment
and that they could terminate their session at any time. When the
participants completed the task in one scene, they were asked to rate
the results by answering some questions.

4.1 Synthesized Product Placement Results
We tested our approach in three different virtual store scenes as
shown in Fig. 6, consisting of a Clothing Store, a Grocery Store, and
a Toy Store. The scenes are with different numbers of shelves and
products. Table 1 shows some statistics of the three scenes.

For the Clothing Store, the products include clothes, shoes, and
bags. The placement generated by our approach is shown in Fig. 6(a).
The products are moderately spaced. We see that our optimizer
placed the more appealing products, such as the evening dress with
a bright color, near the center of the room.

For the Toy Store, the products include dolls, toy cars, and robots.
The placement generated by our approach is shown in Fig. 6(b).
There is no occlusion. The distance between the toys is moderate.
Most of the large toys are placed below the small ones. Besides,
the appealing products, such as the big bear toys, are put by the
optimizer near the center of the shelf, to gain more exposure.

For the Grocery Store, the products include beverages, wine,
candies, etc. The placement generated by our approach is shown in
Fig. 6(c). Due to the large number of products used, the products are
placed more densely yet they are spaced regularly from each other.
Products with a big scale (e.g., the blue bags) are put at the bottom
of the shelf. Besides, the products in bright colors (e.g., the bright
red cans and yellow candies) are placed in the middle of the shelves.
They are expected to receive more attention.

4.2 General Scene Rationality Evaluation
In this study, we evaluated the efficacy of our approach and its
overall performance. We compared our approach with three other
baseline approaches to synthesize store product placement, using
one same random scene as the initialization. The comparison ap-
proaches include: (a) Designer approach: placement created by 3
designers with 2 to 5 years of retail store design experience, each
designer completing one scene’s placement design; (b) W/O EC:
placement optimized by our approach without considering the ex-
posure term; (c) W/O SC: placement optimized by our approach
without considering the spatial term. The placements generated from
the compared four approaches are shown in Fig. 7.
Metrics. We design a rating questionnaire to investigate the par-
ticipants’ feedback, measuring three aspects of the experiences in
the virtual scenes. The questionnaire includes three questions: (1)

“I found the product placement realistic”, evaluating whether our
approach arranged the store akin to the actual stores; (2) “I found the
product placement convenient”, evaluating whether the placement
meets the essential function of a store, i.e. providing convenient
observation for users; (3) “I found the overall in-store experience
satisfying”, evaluating the overall experiences. We try to examine
the efficacy of the whole designed pipeline. Thus the questionnaire
mainly focused on the users’ overall experiences rather than one
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(a) Clothing Store (b) Toy Store (c) Grocery Store

Figure 6: Product placement results. Selected views of the virtual stores with products placed by the optimizer.

(a) Ours (b) Designer

(c) W/O EC (d) W/O SC
Figure 7: Product placements optimized by different approaches
starting with a randomized placement. Our synthesized result (a)
is similar to the result (b) created by the designer. Compared ap-
proaches synthesized unrealistic placements that are undesirable.
For example, the result (c) synthesized without the exposure cost
has the less eye-catching products, such as the dark clothing items,
placed at the center of the room. For the W/O EC approach the spa-
tial constraint cost will be the least. In result (d) synthesized without
the spatial cost, the clothing items are colliding. For the W/O SC
approach, the exposure cost will be the least. See supplementary
material for more results.

specific aspect. We also designed the corresponding ablation study
to investigate the efficiency of the designed cost terms further.

We opt to use a 5-point Likert scale, with 1 meaning ”strongly
disagree” and five meaning ”strongly agree”. Fig. 8 shows the box
plots of the ratings for the stores created by the four approaches. We
carried out Friedman tests and found that for all metrics the differ-
ence was statistically significant among four compared approaches
over three scenes. Thus, we further conducted post-hoc tests, and
the overall results are shown in Table 2. We will discuss the details
in the subsequent sections. Please see supplementary for the detailed
testing results on each scene.
Placement Realism. The Friedman tests results revealed a sig-
nificant difference among the four compared approaches (χ2 =
97.80, p < 0.05,d f = 3) at α = 0.05 significance level. A post-hoc
test using Wilcoxon Signed-Ranks Test with Bonferroni correction
(at the correlated significance level of α = 0.0125) revealed a signifi-
cant difference that the mean rating of our approach (M = 4.31) was
statistically higher than that of the W/O SC approach (M = 2.09)
(W = 0, p < 0.013,r = 0.62). However, the post-hoc test did not
find any significant difference between the mean rating of our ap-
proach (M = 4.31) and that of the Designer approach (M = 4.44)

(W = 114.00, p = 0.157,r = 0.64).
Interestingly, we did not find a significant difference between the

ratings of participants using our approach (M = 4.31) and the ratings
of participants using W/O EC approach (M= 4.04) (W = 37.50, p=
0.027,r = 0.23). We believe that this is due to the efficacy of the
spatial cost term. Dropping the exposure cost term did not result in
an unrealistic synthesized placement, since the placement realism
was mainly affected by the spatial cost term.

The results indicated that, considering placement realism, human-
designed product placement is not a clear winner over our synthe-
sized ones. The results of the statistical tests also supported that
our approach synthesized more realistic results than the W/O SC
approach. We validated the effectiveness of the spatial cost term
in our optimization as the W/O SC approach got the lowest score
significantly in this task. Furthermore, we investigate each spatial
constraint in detail in Sec. 4.4.
Placement Convenience. The Friedman test results revealed a
significant difference among the four approaches (χ2 = 74.69, p <
0.05,d f = 3) at α = 0.05 significance level. We conducted a post-
hoc Wilcoxon rank-test with Boneferroni correction. The results
showed that the placement of our approach (M = 4.02) was reported
to be more convenient than that of the W/O SC approach (M = 2.20)
(W = 0, p < 0.013,r = 0.60) and that of the W/O EC approach
(M = 3.07) (W = 74.50, p < 0.013,r = 0.45). The post-hoc test
showed no significant difference between the convenience score of
the placement synthesized by our approach (M = 4.02) and that of
the placement synthesized by the Designer approach (M = 4.16)
(W = 205.00, p = 0.423,r = 0.08).

The results showed that the placement convenience effectiveness
of our approach is similar to that of the Designer approach. They also
indicated that the spatial cost term increased placement convenience
over the compared scenes. Based on more realistic space allocation,
the placement synthesized by our approach was more convenient for
customers to get what they wanted compared to that synthesized by
the W/O SC approach.
In-store Experience Satisfaction. The Friedman tests results re-
vealed a significant difference among the four approaches (χ2 =
80.42, p < 0.05,d f = 3) at the α = 0.05 significance level. The re-
sults of post-hoc tests using Wilcoxon Signed-Ranks Test with Bon-
ferroni correction (at the correlated significance level of α = 0.013)
did not find a significant difference in the ratings of participants us-
ing our approach (M = 4.27) and the Designer approach (M = 4.18)
(W = 91.50, p = 0.373,r = 0.09). The results also indicated that
the mean score rating of our approach (M = 4.27) was signif-
icantly higher than that of the W/O SC approach (M = 2.33)
(W = 7.00, p < 0.013,r = 0.58) and that of the W/O EC approach
(M = 3.33) (W = 60.50, p < 0.013,r = 0.45) in the overall scenes.

The results showed that the participants generally reported similar
satisfactory ratings on in-store experience after navigating the store
scene synthesized by our approach compared to that synthesized
by the Designer approach. Through the statistical analysis, it also
indicated that the participants generally had better experiences on
the store scene synthesized by our approach, compared to that syn-
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Ours Designer W/O EC W/O SC

(a) Placement Realism (b) Placement Convenience (c) Satisfaction of In-store Experience

Figure 8: The participants’ ratings on product placements synthesized by our approach, the design approach (Designer), our approach without
the exposure cost term (W/O EC), and our approach without the spatial cost term (W/O SC). We opted to use a 5-point Likert scale, meaning
that the higher the number is, the better the user’s experiences are.

Table 2: The results of post-hoc tests in our scene rationality evaluation. We conducted a Wilcoxon signed-rank test with Bonferroni correction
to compare the approaches. The p-values smaller than α = 0.0125(0.05/4), which reject the null hypothesis H0, are in bold.

Approach Realism Convenience User Experience

Ours & Designer W = 114.0, p = 0.157,r = 0.15 W = 205.0, p = 0.423,r = 0.08 W = 91.5, p = 0.373,r = 0.09
Ours & W/O EC W = 37.5, p = 0.027,r = 0.23 WWW === 777444...555,,, ppp <<< 000...000000111,,,rrr === 000...444555 WWW === 666000...555,,, ppp <<< 000...000000111,,,rrr === 000...444555
Ours & W/O SC WWW === 000,,, ppp <<< 000...000000111,,,rrr === 000...666222 WWW === 000,,, ppp <<< 000...000000111,,,rrr === 000...666000 WWW === 777...000,,, ppp <<< 000...000000111,,,rrr === 000...555888

thesized by the W/O SC approach and the W/O EC approach. Please
refer to the supplementary material for more details.

4.3 Exposure Evaluation
In this study, we evaluated the exposure improvement effectiveness
of our approach by investigating total product exposure time under
different conditions. We took the virtual Clothing Store as an exam-
ple. We collected the participants’ eye-tracking data and calculated
the amount of the total exposure time of all products.

There was no significant difference between our approach and
the Designer approach in terms of exposure time in the placements.
However, our approach synthesized placements that received signifi-
cantly longer exposure time compared to the placements synthesized
by the W/O EC approach and by the W/O SC approach.

We conducted Friedman tests on the total exposure time of
all products. The results revealed a significant difference among
the four approaches (χ2 = 11.267, p < 0.05,d f = 3) at the α =
0.05 significance level. The amount of total product exposure
(M = 117.54) using the Designer approach was not significantly
different from the exposure time (M = 113.29) of our approach
(W = 63.00, p = 0.510,r = 0.12). The Wilcoxon Signed-rank
test with Bonferroni correction showed a significant difference
(W = 108.00, p < 0.013,r = 0.50) in the exposure time of the prod-
uct placement optimized by our approach (M = 113.29) and the
exposure time of that of the W/O EC approach (M = 89.25). We
also found a significant difference (W = 119.00, p< 0.013,r = 0.61)
between the exposure time of the product placement optimized by
our approach (M = 113.29) and the exposure time of product place-
ment optimized by the W/O SC approach (M = 72.04).

The results showed that the total exposure of scenes synthesized
by the W/O EC approach is significantly lower than that synthe-
sized by our approach. As the placement of the W/O EC approach
was optimized without exposure consideration, the attractive loca-
tions were likely occupied by less eye-catching products. Thus the
exposure enhancement effectiveness of attractive places could be
reduced. Conversely, our approach tended to fill attractive locations
with eye-catching products.

Interestingly, we found that the total exposure time of the place-
ment synthesized by the W/O SC approach is even lower than that
of the W/O EC approach. Compared to the result of the W/O EC
approach, it is clear that the result of the W/O SC approach is even
less reasonable, and participants spent less time. In this regard, our
spatial cost term imposes the effect of increasing exposure.

To further explore the effectiveness of the exposure cost, we
compared our approach and the W/O EC approach by visualizing

(a) Ours (b) W/O EC
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Figure 9: Gaze heatmaps on products placed by our approach (a)
with and (b) without the exposure cost term. The top row shows
the product placements synthesized by the respective approaches.
The bottom row shows the gaze heatmaps of participants navigating
in the virtual stores synthesized. Blue and red refer to low and
high average exposure time captured from the participants. Our
approach puts the more attractive products, such as the long dresses,
at positions expected to receive more attention (shown in red boxes
). Overall, the exposure cost leads to an increase in the product
exposure particularly at some popular locations such as those near
the entrance (depicted by the green arrow).

the amounts of average exposure time received from the participants
in Fig. 9. Overall, the heatmap of our approach is redder than that of
the W/O EC approach, suggesting our product placement received
more exposure. We find that our approach generally puts more eye-
catching products, such as the long dresses, at positions expected to
receive more attention (e.g., positions shown in red boxes ), which
is conducive to improving the overall product exposure time.

While our approach increased product exposure significantly in
the scene overall and at some popular positions, it did not reduce
the product exposure at the other positions. We tested this through
statistical analysis. To further compare the product exposure differ-
ences of different positions, akin to [35], we grouped the products
by their placement region and compared the total exposure of each
placement region under the two conditions respectively. The results
showed that our approach increased the product exposure at some
popular positions significantly, but it did not significantly cut down
the product exposure at other positions.

Through the statistical analysis, we find that our synthesized
placement does not show a significant difference in product exposure
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Figure 10: The participants’ ratings on product placements synthe-
sized by our approach, W/O IC, W/O VC, and W/O CC approach.

compared to the placement created by designers. The statistical
analysis also indicates that our approach outperforms the other two
approaches in product exposure.

4.4 Spatial Constraints Evaluation
Since the spatial cost is important for specifying the spatial con-
straints for product placements, we further evaluated how each spa-
tial cost term affected the results using an ablation study. We take
the virtual Clothing Store as an example to carry out this study with
the same metrics in Sec. 4.2 and the results are shown in Fig. 10.
The compared approaches are Ours, W/O IC (without Interval Con-
straints), W/O VC (without Visual Balance Constraints), and W/O
CC (without Crowdedness Constraints). The participants’ ratings
are shown in Fig. 10. Regarding the three evaluations, the completed
model of our approach achieved the highest score over all metrics.

The Friedman tests with significance level of α = 0.05 were
conducted to examine the differences among the four compared
approaches. The results showed that the differences were significant
among the four compared approaches over all evaluation metrics, i.e.,
placement realism (χ2 = 17.863, p < 0.05,d f = 3), placement con-
venience (χ2 = 11.238, p < 0.05,d f = 3), and in-store experience
satisfaction (χ2 = 19.173, p < 0.05,d f = 3).

We also used Wilcoxon Signed-Ranks tests to conduct the post-
hoc tests with a significance level of α = 0.0125. Please refer to
the supplementary material for more details. Overall, the results
suggested that our approach with all three cost terms achieved better
performance ratings than the other three compared approaches with a
significant difference. That is, the lack of any spatial constraints may
cause significant performance degradation over all of the metrics.

Among those three spatial considerations, omitting the crowded-
ness term may affect participants’ experiences most. For example,
without crowdedness consideration, the rating of Satisfaction of
In-store Experience decreased by 43.48%. We find that without the
crowdedness consideration (W/O CC), most products were placed in
one region, leaving other regions empty, due to the reason that in that
region products receive higher exposure. However, it is not rational,
so participants gave lower ratings on the realism aspect. Addition-
ally, if most products are crowded in one region, some products may
pile together. Participants felt that those occluded products might
not be reachable even if they wanted to buy those products, resulting
in lower ratings in convenience. Finally, the W/O CC achieved the
lowest score in the in-store experience satisfaction.

Omitting the visual balance term has less influence on the ratings
of convenience. The reason may be that the visual balance term
does not affect the function of the store. Unlike the case without
the interval constraints, products were distributed irregularly, which
may cause overlapping among products, resulting in a lower score
on the convenience rating.

5 DISCUSSION

5.1 User Feedback
The participants gave us some additional feedback after the evalu-
ation. In the scene rationality evaluation, many participants stated

that they could identify some scenes without spatial considerations.
Some participants claimed that the placement was quite awkward
in these scenes so they did not want to stay too long. Overall, most
participants were aware of the enhancement of placing products
(e.g., the products were more regularly placed) and stated that such
placements look more realistic.

Most participants commented that they had better immersive
experiences during the navigation of virtual stores with a more
pleasant product placement. They stated that a pleasant product
placement improved shopping satisfaction and shopping behaviors,
which might engage participants better and motivate them to spend
more time shopping in the store. Some participants claimed that
they had a good impression on more products in such scenes.

Some participants commented on other design aspects of the
virtual stores. For example, for the virtual clothing store, some
participants commented that the store’s lighting design could be
improved. While we focused on how to synthesize realistic product
placement, we could further explore how to synthesize a virtual store
considering some physical environmental aspects such as lighting.

A few participants were satisfied with the scene where the prod-
ucts were gathered at the entrance of the store even though the
shelves in the store were very sparse. One of those participants
believes that for small stores, placing things densely in conspicu-
ous locations (such as near the entrance) will help him make quick
choices and save him time for selection. Therefore, the degree of
crowdedness is a factor of consideration by most but not all people.

5.2 Analysis of Product Exposure Prediction
To evaluate exposure prediction performance, we calculate the
root mean square error (RMSE) between the ground truth i.e., the
recorded gaze duration on one virtual product in data collection
process and the predicted exposure. Our data collection assignments
resulted in a total of 8,809 data samples. Prior to training our regres-
sors, we processed the raw data by normalizing the product exposure
time as described. We randomly sampled a 2,202 test set (about 25%
of the entire dataset) before training our regressor. The remaining
samples were used for training.

We experimented with training different types of regressors. For
the Support Vector Machine regressor, we used an Epsilon-Support
Vector Regressor with an ε of 0.01 and an error term penalty pa-
rameter C of 1,000. For the Decision Tree regressor, we set the
maximum depth to 5. For the Random Forests regressor, we set
the maximum depth to 5 for all 5 trees in the forest. We used these
hyper-parameters which yielded the highest accuracies using grid
searches with 10-fold cross-validation.

In 10-fold cross-validation of the training set with 6,606 sam-
ples, we obtained the RMSE of 28.02%, 27.57%, and 27.19% for
the Support Vector Machine, Decision Tree, and Random Forests
respectively. The Random Forests regressor attains the smallest root
mean square error on our test set. We chose to use the Random
Forests regressor for our optimization for its lowest prediction error.

5.3 Applications
Our optimization framework provides flexibility for the retailer to
generate solutions that match different goals or constraints. Our
approach enables retailers to participate in the product placement
process and tailor their favorite placement. Here are two examples.
Product Promotion. In some cases, the retailer may want to pro-
mote certain products. For example, they want to enhance the ex-
posure of some specific products. By increasing the corresponding
exposure weights wi of these priority products in Equation 2, the
retailer can prompt our optimizer to prioritize placing these products
at locations that are more noticeable to enhance the products’ expo-
sure. Fig. 11(a) shows an example. In this example, the exposure
weights of the corresponding products (enclosed in red) are set as
wi = 0.3 while the exposure weights of the other products are set
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(a) Product promotion (b) Product promotion
Figure 11: Applications. (a) The products desired to have more
exposures (enclosed in red) are placed by the optimizer at the loca-
tions that will receive more visual attention. (b) The user fixed the
locations of some products (enclosed in red). The optimizer changes
other products’ locations while keeping these products fixed.

as wi = 0.1. Starting from a randomized placement, our approach
synthesized a placement where the high-priority products are placed
at locations expected to gain more exposure.
Location Preference. In some other cases, the retailer may want to
fix some products’ locations. For example, a retailer may want some
products to be placed near the exit of a store regardless of where
the other products are placed. Our approach can achieve this feature
by using a hard constraint to fix the locations of certain specified
products while the optimizer modifies the locations and orientations
of other products. Fig. 11(b) shows an example. In this example,
five clothing item locations (enclosed in red) are fixed by the user,
and our optimizer is asked to modify the locations and orientations
of the other products.

5.4 Future Work
In a real-world store, designers refer to the opinion that humans are
torn between neophilia (the allure of anything new) and neophobia
(the fear of anything new) [9]. Thus, most retailers opt to adjust the
store partially to balance the fresh and familiar outlook of the store.
A rational way is to change the product placement often and to sus-
tain the scene layout over a long time. In line with such observations,
it makes sense that we use a given synthesized scene as input, such
as using a scene downloaded from online 3D scene repositories or
generated by automatic scene synthesis algorithms [44, 45].

Besides using elaborately designed store scenes, one future di-
rection is to apply our approach to 3D-reconstructed stores of the
real world. Take the Metaverse as an application example. It needs
a way to bridge the gap between reality and virtual world. With a
3D-reconstructed or a 3D-scanned store as input, retailers can build
up a virtual twin store in Metaverse. Then one can apply our pipeline
to synthesize product placements for an existing store conveniently
for redesigning a store or creating a virtual store. We could also use
other scene modeling techniques to create a store layout as input. For
example, we can use the Sketch2Scene [43] approach to synthesize
a 3D store scene from a sketch.

In our work, we considered exposure and spatial considerations in
the optimization framework, which is sufficient to illustrate our core
idea. Experiments have shown that considering these two items can
obtain results comparable to those of designers. While the absence
of either cost leads to worse results. Our framework also allows
more considerations to meet retailers’ personalized requirements.

Future work may consider commercial factors in the optimization.
For example, grocery stores typically have popular products like
milk placed in the farthest region to prompt customers to pass by
more products as they walk to get the milk. Inspired by this, we
may add estimated user paths as a consideration in our optimization.
Also, we can introduce specific commercial purposes to guide the
scene synthesis, such as increasing the store’s revenue. To achieve
this goal, we may use each product’s profit to weigh the exposure
cost and improve the exposure time of the product with a high profit.

We introduce spatial constraints in our pipeline akin to conven-
tional design rules in the real world. The reason behind the con-
sideration is that we want to reduce the learning cost. For most
people, the shopping environment metaphors enable them to transfer
the shopping experiences without extra effort. Of course, as virtual
environments are fully controllable, we may present products in
”magical” ways, e.g., showing products that float in the air, animat-
ing the displayed products, which may result in more imaginative
and creative layouts.

For commercial applications, it seems promising to take advan-
tage of customer behavior data to personalize virtual stores. In that
case, state-of-the-art recommendation techniques can be integrated
with our approach. For example, based on a customer’s previous
shopping data and his profile, the system may model his shopping
preferences, predicting whether some products are more attractive
for the specific user. With such a recommendation model, a company
may synthesize a virtual store with product placements personal-
ized with respect to the customer’s background, habits, interesting
products, etc. Doing so may further improve shopping experiences.

5.5 Limitations
For the purpose of placement, we divide the products into different
categories. To devise general placement rules, we only consider
the correspondence between products and shelves (e.g., clothes are
on clothing shelves, shoes are on shoe shelves). There is no fine-
grained categorization of products such as differentiating between
dresses and skirts. Depending on the requirements of a specific store,
retailers may employ more fine-grained product categorization and
design of more specific placement rules, such as putting products of
similar categories together.

We experimented with three common spatial considerations in our
approach. Our optimization can be extended to consider other spatial
constraints such as symmetry in the placement. The retailer may also
add other aesthetic constraints to enhance the store’s outlook and the
shopping experience. In some cases, the designed cost terms may
fail to guide the optimizer in searching for a reasonable solution. For
example, a severely unbalanced number of products with different
sizes within one local area may influence the cost of visual balance.

Our approach focuses on the layout of products in the store. We
note that physical environment factors that our approach does not
consider, such as the lighting conditions of the store, may have an
impact on the appearance of products. For example, lights shone
from a different angle or with a different color may change the visual
appearance of the products, which may change the product exposure
and shopping experience.

6 CONCLUSION

Our work introduces a novel computational design approach to op-
timize product placements for virtual stores. Given a store scene
and some 3D virtual products, our approach synthesizes product
placements considering spatial and product exposure factors. We
conducted a user study and demonstrated that our approach provided
pleasant visual experiences and increased exposure to virtual prod-
ucts. Our approach would be useful for VR store creation, especially
for users who have little knowledge about retail strategies, visual
displays, or virtual reality development.

There are some benefits of using our optimization approach. First,
our approach provides an automatic way to generate product place-
ment, which enables a virtual store’s retailer to change the store
layout conveniently without the help of professional designers. It
may encourage more retailers to set up virtual stores. Second, our ap-
proach enhances the overall exposure of products in a store through
optimization, which may increase profits for retailers. Third, the
computational design approach is based on an optimization frame-
work that can be extended by designers (or retailers) to incorporate
other store design factors such as lighting and decoration styles.
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