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Abstract— Recent failures in real-world self-driving tests have
suggested a paradigm shift from directly learning in real-world
roads to building a high-fidelity driving simulator as an alterna-
tive, effective, and safe tool to handle intricate traffic environ-
ments in urban areas. To date, traffic simulation can construct
virtual urban environments with various weather conditions,
day and night, and traffic control for autonomous vehicle
testing. However, mutual interactions between autonomous ve-
hicles and pedestrians are rarely modeled in existing simulators.
Besides vehicles and pedestrians, the usage of personal mobility
devices is increasing in congested cities as an alternative to
the traditional transport system. A simulator that considers all
potential road-users in a realistic urban environment is urgently
desired. In this work, we propose a novel, extensible, and
microscopic method to build heterogenous traffic simulation
using the force-based concept. This force-based approach can
accurately replicate the sophisticated behaviors of various road
users and their interactions through a simple and unified way.
Furthermore, we validate our approach through simulation ex-
periments and comparisons to the popular simulators currently
used for research and development of autonomous vehicles.

1. INTRODUCTION

Autonomous vehicles have the potential to improve the
quality and productivity of the time spent on cars during a
trip, increase the safety and efficiency of the transportation
system, and transform transportation into a utility avail-
able to anyone, anytime. Recent advances in the field of
perception [1], planning [2], [3], and decision-making [4]
for autonomous vehicles have led to implementation of
several prototypes already being tested on roads. Although
the development of a variety of machine learning approaches
largely facilitate the decision making and planing through
learning from the interactions between autonomous vehicles
and real world environments [5]–[7], the limited amount of
real-world data, which can barely support the complex traffic
scenarios, constrain autonomous driving systems in learning
diverse driving strategies. These make the unmanned vehicles
always adopt the most conservative and inefficient decisions
for safety reasons. Despite this, it has been reported that
these autonomous vehicles have caused some fatal accidents
in the real world. Handling the complex interactions with
other road users in various traffic scenarios remains a great
challenge in autonomous driving [8].
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Fig. 1. Example mixed traffic simulation result generated by our approach.

Due to the past failure cases of autonomous vehicles in
real world, a high-fidelity driving simulator has become an
alternative and effective tool to provide various kinds of
traffic conditions for motion control of autonomous vehicles,
allowing for safety tests before real-world road driving [9]–
[11]. Recently, the Apollo simulation platform [12] and Best
et al.’s work [13] make efforts to provide powerful virtual
traffic scenarios for driving strategy testing of autonomous
vehicles. Both simulations implement two non-vehicle traffic
participants: pedestrians and cyclists. However, the behav-
iors of these non-vehicle road users have been pre-defined
and cannot react to vehicle motions in real time. Besides,
an open-source simulator, Carla [14], has been developed
to support the development, training, and validation of
autonomous urban driving systems, which offers flexible
specification of sensor suites and various environmental
conditions. Although dynamic pedestrians are introduced into
the simulation, the interaction between vehicle and pedestrian
is handled in a simple predefined way: in an interaction,
the pedestrian stops to wait for a few seconds as sensing
any vehicles, then walks anyway without considering the
existence of the vehicle. From this point of view, current
existing simulators merely make decisions of autonomous
vehicles motion in a reactive way without considering any
mutual influences and real interactions between vehicles and
other potential road-users. As bicycle usage and pedestrian
walking have been increasing in many countries in urban
areas due to potential environmental and health benefits,
creating a mixed simulation environment (Fig. 1) consisting
of mutual influences and interactions among vehicles, two-
wheelers, and pedestrians, is highly desired.

In this paper, we focus on modeling the heterogeneous
traffic composed of various types of road-users by an unified
approach that can facilitate autonomous driving strategy test-



ing. Current existing microscopic modeling methods [15]–
[17] and traffic simulators (SUMO [18], SimMobility [19]
and Vissim [20]) have always separately modeled the be-
havior of vehicles, pedestrian, bicycles and their interac-
tions. Furthermore, each specific behavior of each types
of road-user, such as vehicle acceleration and lane change,
is modeled and controlled individually. Such non-unified
approaches are complicated and inefficient in generating
complex virtual traffic environments.

Here, we propose a simple, efficient, scalable force-based
framework to uniformly simulate the behaviors of vehicles,
pedestrians, bicycles, and the interactions among them, in
which any detailed behavior for each category of individuals
can be attributed to a specific force. We make three contri-
butions:
• It introduces a novel, scalable framework based on the

force-based concept to generate complex virtual urban
traffic environments for autonomous vehicle testing.

• Unlike previous traffic simulation methods, it introduces
a unified model for various detailed behaviors of vehi-
cles, including acceleration/deceleration, lane keeping,
and lane changing behavior.

• It provides a viable solution for describing the interac-
tions among different types of road users in simulation.

Benefits of this method have been verified in experimental
tests at the end of this paper.

2. FORCE-BASED FRAMEWORK

We present a two-layered force-based framework for hy-
brid traffic simulation. Specifically, the top layer calculates
the detailed motions of each kind of road users respectively
by interpreting them as different forms of force according to
their different behavioral characteristics. In the second layer,
the force-based model is extended to describe the interaction
between different road users. As the simulated environment
is constructed for the unmanned vehicles testing, we would
mainly focus on the interactions that may influence the deci-
sion making of autonomous vehicle, which are the vehicle-
pedestrian and vehicle-bicycle interactions.

Inspired by the social force model [21]–[24] for pedestrian
dynamics, the participants in mixed traffic act as if they
would be subjected to ’force’ from the influences of their
desire, their neighboring participants and the built environ-
ment such as road structures, walls or buildings. Specifically,
assuming that individual i is an arbitrary road user in the
mixed traffic flow, its motion is determined by a combination
of sociopsychological and physical forces. The total effect
force Fi (t) is defined as follows:

Fi (t) = F0
i (t)+

∑
j(6=i)

Fij (t)+
∑

W
FiW (t)+

∑
o
Fio (t) ,

(1)
where the driving force F0

i (t) reflects the individual’s inten-
tion to move to a certain destination and with a desired speed,
the repulsive force Fij (t) describes the effects of interactions
with its neighboring individuals j, FiW (t) measures the
repulsive effects of the built environment W , and Fio (t) is
introduced to describe the interaction with other categories
of road users.

The driving force F0
i (t) describes the individual i’s moti-

vation to move with an expected velocity v0
i (t) by adapting

the actual velocity vi (t) within a certain relaxation time τi
[22]:

F0
i (t) = mi

v0
i (t)− vi (t)

τi
= mi

v0
i (t)− vi (t)

v0
i (t)

ai, (2)

where mi is the mass of individual i and ai represents the
maximum acceleration.

In our framework, the repulsive force Fij from a certain
neighbor j is presented in different forms according to
different characteristics of various kinds of road users. For a
pedestrian, this force is defined as a combination of social-
psychological and physical forces, describing the psycho-
logical tendency of two pedestrians to stay away from each
other, and the physical contact force when the pedestrians
touch each other, respectively. For vehicles, the repulsive
force comes from all the neighboring vehicles within sight
in the current and adjacent lanes. For a bicycle, the force
is defined as a combination of the direct repulsive force for
collision avoidance and the force for overtaking.

Similarly, for different types of road users, the force
FiW (t) from the built environment is defined in different
forms, depending on their specific locations and related
behaviors. Specifically, FiW is introduced to describe pedes-
trian i’s interaction with environment borders and obstacles
W . For a bicycle, the repulsive force FbW from lane
boundary W makes the bicycle b keep a certain distance
from lane boundaries for safety. Analogously for vehicles,
FcW (t) measures the repulsive force from the lane boundary
W . But different from bicycles, a distinctive force Fcl

c (t) is
introduced to model vehicle behaviors in the lane-changing
process.

We define the interaction force Fio (t) as the environmen-
tal influence respectively for the interactions between vehi-
cles and pedestrians, as well as vehicles and bicycles. The
interacting individuals treat each other as the environmental
influence and compute the feedback to themselves. It is worth
noticing that the pedestrian behaviors are computed using the
social force model. More details can be found in [21], [22].

3. FORCES FOR BEHAVIORS IN MIXED TRAFFIC

3.1. Force-based Model for Vehicles
The force-based simulation model for vehicles is designed

according to the characteristics of vehicle movements:
• Drivers mainly drive in a car-following fashion. How-

ever, the vehicle’s movement is also affected by all
vehicles in the field of view.

• Drivers must keep driving within the lane marks, and
follow the traffic laws and regulations.

• Drivers tend to change lanes to take advantage of the
allowable speed in a target lane or to cope with some
imperative factors such as end of current lane.

3.1.1) Repulsive Forces between Vehicles: When moving
along a traffic flow, a vehicle c is subjected to repulsive forces
from all the neighboring vehicles within sight in its current
and adjacent lanes. As illustrated in Fig. 2, due to the lane-
keeping rules in traffic, the impact of the vehicle q in adjacent
lanes on vehicle c is far less than that of the front vehicle p in
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Fig. 2. The sight range (in red sector) of an vehicle c and its repulsive
forces Fcp and Fcq from surrounding vehicles in the current and adjacent
lanes. The repulsive forces FcWU

and FcWL
from two-side lane boundaries

(WU and WL) are also shown here.

the current lane in the absence of lane changing. Therefore,
we design the repulsive force Fcj from a certain neighbor j
in different forms.

Influence from vehicles in adjacent lanes: The force
from a neighboring vehicle q in the adjacent lane (blue
vehicle in Fig. 2) is mainly associated to its distance and
direction to vehicle c, defined as follows:

Fn
cq (t) = Ucqe

− rcq
Rcq ncq, (3)

where Ucq is the scale factor of the repulsive force Fn
cq (t),

rcq is the distance between the vehicle q and c, Rcq is the
sensitivity coefficient of the repulsive force to the distance,
and ncq is the unit vector pointing from vehicle q’s center
to vehicle c’s center.

Influence from the vehicle in current lane: According
to the car-following phenomenon [25] in real-world traffic,
vehicle c’s behavior in the current lane is mainly a response
to its leading vehicle p (green vehicle in Fig. 2), for purpose
of maintaining a safe gap to vehicle p while seeking for
its desired velocity during driving. Here, we utilize the
braking deceleration term in the popular and well-calibrated
intelligent driver model (IDM) [26], [27] to approximate the
repulsive force Ff

cp of vehicle c from its leading vehicle p.
Specifically, the force Ff

cp can be defined as a function of
the vehicle c’s velocity vc, its bumper-to-bumper distance s
and relative velocity ∆v to the leading vehicle p:

Ff
cp (t) = −bc

(
s∗

s

)2

nc,

s∗ = s0 + vcTc +
vc∆v

2
√
acbc

,

(4)

where the parameters (ac, bc, s0, Tc) are constant for each
vehicle, which describe its basic driving capability, ac and
bc are respectively the vehicle c’s maximum acceleration and
comfortable deceleration, s0 is jam space headway and Tc
is the desired safety time headway, nc is the unit vector
denoting the current direction of vehicle c’s movement.

3.1.2) Force from Lane Boundaries: The repulsive force
FcW from two-side lane boundaries W is introduced to
prompt the vehicle c to stay within the lane marks and close
to the lane’s central line. As shown in Fig. 2, the repulsive
forces from the upper (WU ) and lower (WL) boundaries
of the lane, where the vehicle c is located, are respectively
calculated, and their vector sum (FcWU

+ FcWL
) represents

the vehicle c’s repulsive force from all lane boundaries.
When the vehicle is in the middle of the lane, the repulsive
forces from WU and WL would compensate to each other.
For each boundary W , the force is associated with the
distance rcW between vehicle c and lane boundary W ; that
is, the closer the vehicle is to the lane boundary, the greater
the repulsive force it receives is. The formula of force FcW

can be defined akin to Eq. 3.
3.1.3) Force for Lane Changing: A vehicle generally

performs lane changing if it can go faster in a target lane.
According to the lane-changing model proposed by Kesting
et al. [28], the incentive condition for a lane-changing
decision of the vehicle c is fulfilled if the utility of a possible
lane change for vehicle c is larger than the influence on the
involved neighbors (the original follower o in the original
lane and the new follower n in a target lane), which is
typically measured in acceleration values:

ãc − ac + p (ãn − an + ão − ao) > ∆ath, (5)

where the first two terms refer to the acceleration gain
of a possible lane changing for vehicle c and the other
terms indicate the acceleration loss of the original and new
followers, ãc denotes the new acceleration for vehicle c after
a prospective lane changing, and ac denotes its acceleration
before the lane changing. The politeness factor p determines
to which degree these successors influence the lane-changing
decision of vehicle c. ∆ath is the lane-changing threshold
which prevents lane changes for marginal advantage [16].

If the incentive criterion (Eq. 5) is satisfied, the lane
changing is performed by introducing an attraction force Fcl

c

from the target lane to vehicle c. As the attraction force is
to counteract the lane-keeping constraint from current lane
boundary, Fcl

c can be computed akin to the repulsive force
FcW from current lane boundaries, using Eq. 3.

3.2. Force-based Model for Bicycles

Unlike the way pedestrians and vehicles interact with their
neighbors, bicyclists have their own characteristics when
interacting with neighbors. First, bicycles generally do not
move in a car-following manner and utilize lateral space
to a greater extent than motor vehicles do. Second, unlike
pedestrians, bicyclists tend to adjust their motions rather than
completely stop and wait when an event happens, so as to
reduce the amount of required physical exertion.

Therefore, we describe a bicycle k’s repulsive force Fkj

from its neighbor j with two force components: the direct
repulsive force FR

kj for collision avoidance and the force FE
kj

for overtaking:

Fkj (t) = FR
kj (t) + FE

kj (t) . (6)

The direct repulsive force FR
kj for collision avoidance

is used to describe a cyclist’s conscious response to avoid
collisions with other bicycles nearby. In accordance with a
bicycle’s shape, we use an ellipse to define a bicycle’s safety
space in a certain period of time, and use the semi-minor
axis of the ellipse to measure the degree of other bicycles’
influence. As shown in Fig. 3, B is the semi-minor axis of the
ellipse and the relative velocity (∆v = vk − vj) of bicycle
k to j lies on the semi-major axis of the ellipse. The position
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Fig. 3. Bicycle k’s repulsive forces from its neighbor bicycle j. The
green ellipse area denotes the safety space of bicycle k. The bicycle k’s
repulsive force Fkj from its neighbor j can be decomposed into two force
components: one direct repulsive force FR

kj for collision avoidance and one
force FE

kj perpendicular to it for overtaking.

of bicycle k is the focus of the ellipse and the neighboring
bicycle j is located on the circumference of the ellipse. A
smaller B means shorter distance between bicycle k and j,
which results in a larger repulsive force FR

kj . Formally, the
force can be computed as follows:

FR
kj (t) = Ukje

−B/Rkjnkj , (7a)

B =
1

2

√
(‖rkj‖+ ‖rkj −∆v∆t‖)2 − (‖∆v∆t‖)2, (7b)

where rkj is the vector that points from bicycle k to j, ∆t
is a time step, Ukj and Rkj are constant factors, and nkj is
the unit vector from bicycle j’s to k.

At the same time, the overtaking force FE
kj is introduced to

describe bicycle k’s flexible behavior when confronted with
obstacles or congestion. The direction of FE

kj is perpendic-
ular to the direct repulsive force FR

kj and the magnitude is
proportional to FR

kj :

FE
kj (t) = α

∥∥FR
kj (t)

∥∥nV
kj , (8)

where nV
kj is the unit vector perpendicular to FE

kj , and α is
the scale factor set as 0.3 in our experiments.

3.3. Interactions in Mixed Traffic

In this section, we model vehicle-bicycle interactions, as
well as interactions between a vehicle and a pedestrian
crossing a road. In keeping with our force-based framework
for each kind of road users, the mutual influences of the
involved interacting individuals are measured in terms of
forces and encoded as environmental feedbacks into their
own behavioral control models.

3.3.1) Vehicle-Bicycle Interactions: To model vehicle-
bicycle interactions, the interaction force is designed to take
one of two different forms depending on the positional
relationship between the bicycle k and vehicle c (see Fig. 4).

For vehicle c, if there is a side-by-side bicycle k in the
sight range (the light green area), it will receive a lateral
force from k for collision avoidance (Fig. 4 (a)). On the
other hand, if bicycle k is traveling in the near front, vehicle
c will receive a rearward force for deceleration (Fig. 4

(b)  k in front(a)  k by side

Fig. 4. Vehicle c receives repulsive force Fck from bicycle k in interaction.

(b)). Accordingly, the vehicle c’s interaction force Fck from
bicycle k is defined as:

Fck (t) =

Ucke
− sck

Rck nck, k by side

−bc ∗
(

s0+vcTc

sck

)2
nc, k in front

(9)

where sck denotes the distance between vehicle c and bicycle
k, vc is the velocity of the vehicle, nck is the unit vector
pointing from bicycle k to vehicle c, and nc represents
the moving direction of vehicle c. The constant parameters
(bc, Tc, s0) describe the vehicle c’s basic driving capability,
which have the same meanings as those in Eq. 4. Uck and
Rck are constant factors.

Similarly, the interaction force Fkc subjected on bicycle
k can take one of two different forms depending on the
positional relationship between k and c: whether the vehicle
is by side or in front. The force is formulated akin to Eq. 9.

3.3.2) Interactions with a Road-crossing Pedestrian:
When a pedestrian is about to cross a road in a mixed
traffic environment, he/she perceives the surrounding traf-
fic conditions, and the approaching vehicles correspond to
his/her stimuli. Based on this perception, the pedestrian i
makes a walk-or-wait decision based on gap acceptance [29],
[30] to judge whether the current distance gap between
him/her and the approaching vehicle c can ensure a safe
crossing. Both the pedestrian’s predicted crossing time ti and
the vehicle’s estimated passing time tc are computed. The
crossing is considered as safe if ti is less than tc. Otherwise,
the pedestrian needs to wait for the next longer gap.

When the pedestrian i is walking, he/she usually slows
down at the beginning of crossing due to the concerns about
vehicle c’ arrival time, and after successfully cutting in,
the pedestrian tends to accelerate significantly due to the
psychological impact of wanting to leave the danger zone.
Inspired by Steven’s psychophysical power law [31], we
model this kind of dynamic behavior pattern and compute the
interaction force Fic received by pedestrian i from vehicle c
as follows:

Fic (t) = βs0.67ic nic, (10)

where sic is the distance between pedestrian i and vehicle c
and nic is the unit vector pointing from c to i. β is a constant
scale factor set as 0.5 in our experiments.

When facing a pedestrian i trying to cross a road, vehicle
c tends to decelerate for safety. This situation is similar to
the sudden crossing of a bicycle as depicted in Fig. 4(b).
Therefore, we calculate the interaction force Fci received by
vehicle c from pedestrian i similarly as Fck in Eq. 9.

On-line Simulation: Up to now, each road user’s detailed
behavior in the mixed traffic flow has been modeled by



applying the described force-based method. Based on given
initial states (position and velocity) of each road user, our
method can reconstruct the sophisticated behaviors of various
road users and their interactions. Taking into account the
potentially complex environment required for autonomous
vehicle testing, more microscopic behaviors of arbitrary
road user can be easily integrated into current simulation
framework by adding more specific forces.

For autonomous vehicle testing, an autonomous vehicle
can be easily added into the simulation environment and con-
trolled by its own sensing and planning algorithms. Manned
vehicles, pedestrians and bicycles in the system will sense
and react to the dynamic status of autonomous vehicle. It is
worth mentioning that the proposed forced-based approach is
compatible with commercialized simulators for autonomous
vehicle testing, such as Carla and Apollo. The interactions
between different types of road-users in Carla and Apollo can
be simply replaced with the proposed unified force approach.

4. SIMULATION RESULTS

To ensure the robustness and safety of autonomous ve-
hicles traveling on real-world roads, autonomous driving
systems should be tested in virtual yet realistic traffic en-
vironments before real-world deployment. To validate our
force-based simulation framework, we generate mixed traf-
fic flow on a road without any traffic signs, which can
be regarded as a complex traffic scenario for autonomous
vehicle testing (Fig. 1). Table I summarizes the key parameter
values used in our experiments. Note that we do not list
the parameter values used in the pedestrian’s social force
model, as they are set as the same as those in [22]. The
parameters (v0c , ac, bc, s0, Tc) for each vehicle are initialized
by empirical values which are then added with some random
perturbations to reflect individual diversity in locomotion.

TABLE I
PARAMETER VALUES USED IN OUR EXPERIMENTS.

Parameter Value Unit Description
v0
c [2,6] m/s vehicle’s optimal velocity

ac [2,3.5] m/s2 vehicle’s maximum acceleration
bc [2,3.5] m/s2 vehicle’s comfortable deceleration
s0 [1.5,2.5] m jam space headway
Tc [0.5,0.6] s desired safety time headway

∆ath 0.5 m/s2 lane changing threshold
p 0.4 / politeness factor in lane changing

Ucq 3.3 / scale factor of Fn
cq

Rcq 3.0 / sensitivity coefficient of Fn
cq

Ukj 3.5 / scale factor of FR
kj

Rkj 2.0 / sensitivity coefficient of FR
kj

Uck 3.5 / scale factor of Fck
Rck 2.0 / sensitivity coefficient of Fck

As the simulated environments are constructed for un-
manned vehicles testing, the following experiment results
would only focus on the interactions between various ve-
hicles, vehicles and pedestrians, as well as vehicles and
bicycles, respectively. In addition, the animations of all the
mentioned comparisons are shown in the supplemental video.
Although the interactions between individual pedestrians,
individual bicycles, as well as pedestrians and bicycles are
not shown in the main results, they are all incorporated into
the mixed traffic simulation.

Timing performance: To determine the timing perfor-
mance of our force-based simulation method, we conducted a
series of experiments with different numbers of individuals in
the mixed traffic, in which the ratio of vehicles, bicycles and
pedestrians was 1:2:3. All the timings were obtained with
a 64-bit laptop machine with a 2.90 GHz Intel CoreTMI9-
8950HK processor, 32GB memory, and an Nvidia GeForce
GTX 1080 video card. The results of our performance
tests shows that the computational costs scale approximately
linearly with the number of road users simulated. Moreover,
our approach can simulate about 800 agents in real time
(30 fps) and over 1,200 agents at interactive simulation
rates (10 fps). The efficient time performance indicates
that our approach can be straightforwardly plugged into
various existing traffic simulation systems for autonomous
vehicle testing and data generation. It is noticeable that our
approach is collision-free because the repelled force between
each road-users significantly increases with the decrease of
their distance. When the environment becomes crowded,
pedestrians, bicycles and vehicles tend to keep in their lanes
and reduce any interactions with each other.

Interaction with Road-crossing Pedestrians: We com-
pare our force-based approach for pedestrian crossing to two
popular open-source simulation platforms: Apollo [12] and
Carla [14]. Fig. 5 shows the comparison results between
Apollo simulation and our method. It is observed that in
Apollo simulation (Fig. 5(a)), the autonomous vehicle (in
blue) reacted to a pedestrian (represented as yellow rect-
angle) crossing the road with an initially defined constant
velocity of 2.24 km/h. Since the pedestrian’s reaction to
the real-time behavior of the vehicle was not considered
in Apollo simulation platform, the pedestrian continued to
follow the predefined path after the vehicle had completely
stopped, thereby colliding with the vehicle (at the 880th
frame in Fig. 5(a)). By contrast, our force-based approach
attempted to mimic the real pedestrian-vehicle interaction in
which both the pedestrian and vehicle made decisions based
on the other one’s instantaneous status (Fig. 5(b)).

Fig. 6 shows the velocities of both the pedestrian (in
yellow lines) and vehicle (in blue lines) through (a) Apollo
simulation and (b) our force-based approach. It is observed
in our approach that the vehicle and the pedestrian both
decelerated for safety as they sensed each other. Subse-
quently after the vehicle completely stopped, the pedestrian
accelerated to cross the lane as quickly as possible. Finally,
both of them recovered to their original status after the
interaction. However, in the result of Apollo simulation
shown in Fig. 6 (a), the autonomous vehicle braked urgently
when the pedestrian came close and the pedestrian did not
react to the vehicle’s behaviors.

The Carla simulation platform models pedestrian-vehicle
interactions with a simple rule-based approach: when a vehi-
cle appears on the pedestrian’s planned route, the pedestrian
momentarily stops moving. After waiting for a couple of
seconds, the pedestrian will continue to walk even if there
is a vehicle in front of the pedestrian.

Through the above comparisons, it is clearly shown that
the force-based approach models pedestrian-vehicle interac-
tions in a more realistic and smooth manner in the pedestrian
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Fig. 5. Simulation results of the intersection scenario that a pedestrian (in
yellow rectangle) tends to cross the road when a blue vehicle is coming,
using (a) Apollo simulation platform and (b) our force-based method. The
pedestrian’s movement was predefined with a constant velocity of 2.24 km/h
in Apollo simulation, while the pedestrian reacted to the real-time behavior
of the blue vehicle in our approach.
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Fig. 6. The comparison of the velocities of both the pedestrian and vehicle
between Apollo simulation platform (a) and our approach (b).

road-crossing scenario. We believe our approach can be
incorporated into Apollo and Carla simulation platform to
simulate pedestrian-vehicle interactions more realistically.

Bicycle-Vehicle Interactions: In Fig. 7, we show the
snapshots of bicycle-vehicle interactions in two different
situations described in Section 3-3.1: (a) a cyclist riding
in front of a vehicle; (b) a cyclist riding near the side of
a vehicle. For each case, we also show the velocities of
both the bicycle and vehicle for comparison. The solid lines
represent the velocities in the forward moving direction and
the dashed lines indicate those in the lateral direction. As can
be seen from Fig. 7, when the bicycle was driving in the near
front of the vehicle (from about 430th to 530th frame), the
vehicle decelerated significantly in the forward direction, and
its lateral movement did not change significantly. In contrast,
when the bicycle was traveling near one side of the vehicle
(from about 170th to 205th frame), the vehicle obviously
avoided collision with the bicycle in the lateral direction of
movement. At the same time, there was a slight deceleration
in the forward moving direction of the vehicle. It is worth
noting that in both interaction situations, while the vehicle
was reacting, the bicycle also accelerated away from their
interaction area and returned to its lane. As depicted in Fig. 7,
there was apparent acceleration behavior in both directions
of bicycle movement.

5. CONCLUSION AND DISCUSSION

In this paper, we devised a virtual mixed-traffic envi-
ronment that can approximately emulate the intricate urban
traffic for autonomous vehicle testing. Pedestrians, bicycles,
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Fig. 7. The snapshots for two kinds of bicycle-vehicle interaction scenarios
and the velocities of both the cyclist and vehicle in their interaction process:
(a) the cyclist riding in front of the vehicle; (b) the cyclist riding near the side
of the vehicle. For the scenario in (a), the vehicle decelerated significantly in
the forward moving direction as response to the front bicycle’s movement,
while in scenario (b), there is an obvious avoidance behavior in the vehicle’s
lateral moving direction to prevent collision with the bicycle by side.

and vehicles are considered as the main road users. Their
behaviors are encoded in a general, unified force-based
framework, whose forces can be classified as the desire force
to a target, the repulsive forces with neighbors and the built
environment, and interaction forces between different kinds
of road-users. Our approach offers a simple, efficient, and
extensible method to simulate different behavioral charac-
teristics of different road users and the realistic interaction
effects in complex urban traffic environments. Experimental
results have been conducted to validate the performance of
our approach by comparing with two popular simulation
platforms specifically for autonomous vehicle testing .

Although the simulation results are promising, the ap-
proach presented in this paper is still preliminary and can
be improved in several aspects. First, the simulation pa-
rameters can be set optimally by calibration using real-
world traffic data, rather than being set empirically as in the
current experiments. Second, it will be more interesting if
pedestrians, bicyclists and drivers’ personalized behavioral
characteristics can be modeled to generate heterogeneous
crowd behaviors, thus generating more versatile and real-
istic simulations. Third, for pedestrian crossing scenarios, a
pedestrian’s decision-making process is far more complex in
real-world traffic than that in our current model. Besides the
gap acceptance criterion, there are possibly other factors that
need to be considered in making the walk-or-wait decisions,
such as the total number of pedestrians crossing the road
together and the waiting time.
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