
Scene Mover: Automatic Move Planning for Scene Arrangement
by Deep Reinforcement Learning (Supplementary Material)

HANQING WANG, Beijing Institute of Technology
WEI LIANG∗, Beijing Institute of Technology
LAP-FAI YU, George Mason University

ACM Reference Format:
Hanqing Wang, Wei Liang, and Lap-Fai Yu. 2020. Scene Mover: Automatic
Move Planning for Scene Arrangement by Deep Reinforcement Learning
(Supplementary Material). ACM Trans. Graph. 39, 6, Article 233 (Decem-
ber 2020), 10 pages. https://doi.org/10.1145/3414685.3417788

1 COMPARISON WITH PRIOR WORKS
In this section, we compare our work with prior robotics works
from the problem setting and approach perspectives.
Problem Setting. From the problem setting perspective, we com-
pare different works based on the following factors:

(1) Object Pose: the orientation of objects;
(2) Shape Variation: the shape variation of objects;
(3) Collision: collision detection during moving;
(4) Multiple Objects: handling multiple movable objects;
(5) Target Configuration: whether a target configuration is given;
(6) Scenarios: the testing scenarios.
The detail of the comparision is shown in Table 1.
A rearrangement task generally comes with a certain target con-

figuration of the objects. An alternative rearrangement problem
setting is based on object clustering [Song et al. 2019], where each
object has a certain target region that it should move to. The latter
case can be regarded as having a soft target configuration.

Most of the prior works considered multiple movable objects and
collision detection. However, [Haustein et al. 2019; King et al. 2017;
Labbé et al. 2020; Song et al. 2019; Yuan et al. 2019] did not consider
the pose of objects probably because taking poses into considera-
tion would substantially expand the space of layout states. Many
prior works [King et al. 2017; Song and Boularias 2019; Yuan et al.
2019] also did not consider the variation in object shapes, assuming
the same object shape for all objects in a scenario. [Haustein et al.
2019; Labbé et al. 2020] assumed simple object shapes such as cylin-
ders and cubes. However, in most real-world scene rearrangement

∗Corresponding author.

Authors’ addresses: Hanqing Wang, Beijing Institute of Technology, hanqingwang@
bit.edu.cn; Wei Liang, Beijing Institute of Technology, liangwei@bit.edu.cn; Lap-Fai
Yu, George Mason University, craigyu@gmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART233 $15.00
https://doi.org/10.1145/3414685.3417788

(b) Yuan et al. 2019

(d) Song and Boularias 2019

(a) Synthetic Scene (Ours)

(c) Real-world Scene (Ours)

Fig. 1. Some scenarios tested in the experiments of prior works and our
work. (b) and (d) are synthetic and real tabletop scenarios tested in prior
works [Yuan et al. 2019][Song and Boularias 2019]. (a) and (c) are synthetic
and real indoor scenes tested in our work. The scene complexity and settings
of the prior works and our work are very different. For example, our work
rearrangesmany furniture objects with a variety of shapes; the indoor scenes
also have irregular boundaries and obstacles (e.g., walls) within the scenes.
Our Scene Transformer approach driven by deep reinforcement learning
plus MCTS is capable of handling such complexities.

scenarios, the shapes of objects (i.e. furniture) vary a lot. There-
fore the scene rearrrangement problem that our approach tackles is
generally more complex.

Our work solves the rearrangement problem considering all the
above factors. The prior works focus on solving tabletop rearrange-
ment and are evaluated on synthetic scenarios as illustrated in
Figure 1 (b) and (d). In contrast, our work is demonstrated on both
synthetic and real-world indoor scenes (Figure 1 (a) and (c)), which
are more sophisticated due to the larger number of furniture objects
present, variations in object shapes, and irregular room layouts and
obstacles. Our Scene Transformer approach is designed to handle
such scene complexities.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

233:2 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Table 1. Comparison between different works. Overall, our approach can tackle multi-object real indoor scene rearrangement considering object pose, shape
variations, and collision constraints.

Problem Setting & Approach

Works Object
Pose

Shape
Variation Collision Multiple

Objects
Target

Configuration Scenarios Planning Approach

[Yuan et al. 2019] ✗ ✗ ✓ ✗ ✓ Synthetic Tabletop DRL(CNN)
[King et al. 2017] ✗ ✗ ✓ ✓ ✓ Synthetic Tabletop MCTS

[Haustein et al. 2019] ✗ ✓ ✓ ✓ ✓ Synthetic Tabletop RRT+TS
[Song and Boularias 2019] ✓ ✗ ✓ ✓ ✓ Synthetic Tabletop Searching

[Labbé et al. 2020] ✗ ✓ ✗ ✓ ✓ Synthetic Tabletop MCTS
[Song et al. 2019] ✗ ✓ ✓ ✓ ✗ Synthetic Tabletop IL(CNN) + MCTS

Scene Transformer (Ours) ✓ ✓ ✓ ✓ ✓ Real/Synthetic Indoor Scene DRL(CNN+LSTM) + MCTS

Approach. From the planning approach perspective, [Yuan et al.
2019] used deep neural networks to learn how to rearrange a single
object through deep reinforcement learning. Most of the existing
works [Haustein et al. 2019; King et al. 2017; Labbé et al. 2020; Song
and Boularias 2019] solved the multi-object planning problem based
on a search framework. However, since the problem setting varied,
specific designs were adopted to fit with the problems correspond-
ingly.
For example, [King et al. 2017; Labbé et al. 2020; Song et al.

2019] adopted Monte Carlo Tree Search (MCTS) in their search-
ing. [Haustein et al. 2019] proposed a RRT-based tree searching
(RRT+TS) algorithm. [Song et al. 2019] adopted a policy network in
the Rollout step of MCTS, which our approach also does similarly.
However, our task is different from theirs and both the training para-
digm and the network design are different. They trained their policy
network (with a CNN backbone) by using random success demon-
strations, known as Imitation Learning (IL). For our real-world scene
rearrangement planning problem, the scenes are usually much more
complicated, making them hard to annotate by random methods.
Additionally, sequential decision making is critical due to the com-
plexity of the scene, which calls for a very strong planning agent
and training method. To tackle such issues, we propose a powerful
neural network with LSTM units to process sequential information,
as well as a novel deep reinforcement learning (DRL) paradigm with
reward shaping that is effective for solving our problem.

2 NETWORK STRUCTURE
The structure of the Q-network is shown in Fig. 3. The Q-network
comprises two parts. The first part is a residual convolutional en-
coder. It encodes the input (an initial layout and a target layout) to a
4096-d feature vector. There are 10 convolution layers in total. The
convolutional layers adopt batch normalization. ELU is used as the
activation function.
The second part is LSTM layer followed by a fully-connected

layer, which is appeneded to the encoder as a regressor. The 4096-d
feature vector passes through the layers and finally outputs the
predicted Q-value for each action.

3 ALGORITHM
The pseudo code of the Scene Transformer is illustrated in Algo-
rithm 1. It demonstrates an iteration of Scene Transformer’s MCTS.

ALGORITHM 1: An iteration of Scene Transformer’s MCTS
Input: the root node lt of the current searching tree , the Q-network

Qp (·, ·), maximum simulation depth D , node score’s
function in selection step Q̃ (·), node’s Q-value Qm (·), node
visit count N (·), function for retrieving the layout
represented by the parent’s node p(·), simulation function
e(·, ·), reward function r (·, ·)

Output: The best action a∗, the root node l ′t of the next iteration’s
searching tree.

for j = 1 to N do
l = argmaxl Q̃ (l);
a = argmaxa Qp (l, a), a is a legal action and not be expanded;
Expand a new node representing l ′ as a child of the node
representing l , the edge stores action a;

sum = 0;
l0 = l ′
for k = 1 to D do

ak = argmaxa Qp (lk−1, a);
lk = e(lk−1, ak);
sum = sum + r (lk−1, ak);
if lk is the target layout then

break;
end

end
N (l ′) = 1;
Qm (l ′) = sum;
while l ′! = lt do

l ′ = p(l ′);
a∗ = argmaxa Qm (e(l ′, a));
Qm (l ′) = γQm (e(l ′, a∗) + r (l ′, a∗));
Nm (l ′) = Nm (l ′) + 1

end
end
a∗ = argmaxa Qm (e(lt , a))
l ′t = e(lt , a∗)
return a∗, l ′t

4 REWARDS DISCUSSION
In this section we discuss the influence of the reward terms. Em-
pirically, a basic reward mechanism is composed of the positive
rewards and negative rewards. The positive rewards include the
gains received during the task and the reward of finishing the task.
The negative rewards include the penalty received during the game.
Thus our basic reward mechanism has three terms:

• First-arrival/leave: +/-4

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

Scene Transformer: Automatic Move Planning for Scene Arrangement by Deep Reinforcement Learning (Supplementary Material) • 233:3

current level: 1

(a) Game start (b) Selected

(e) Left

(c) Up (d) Down

(f) Right (g) A*

Fig. 2. (a) The start of a game. (b) An object is selected. (c)-(f) The object is slided up, down, left and right as far as it can reach. (g) The user taps on the target
position and move the object to it through a path searched by A* Searching.

Co
nv

1

Co
nv

2_
1

Co
nv

2_
2

In
pu

t

Co
nv

3

32x32x6464x64x2 16x16x128 8x8x256

Fl
at
te
n

4096

LS
TM

O
ut
pu

t

256map size

kernel size 5x5 3x3 1x1 3x3 3x3 1x1 3x3 3x3 1x1 3x3

4x4x256

Co
nv

4_
1

Co
nv

4_
2

Co
nv

5

Co
nv

6_
1

Co
nv

6_
2

Co
nv

7

Li
ne

ar

125

Fig. 3. The structure of the Q-network.

• Success: 50
Basing on those reward terms, we did an ablation study of other
terms we use:

• Base: -1
• Repetition: -2
• Multi-arrival/leave: +/-2

We trained the Q-network under 3 different reward settings: 1)
without Base term, 2) without Repetition term, and 3) without Multi-
arrival/leave term.

We tested each reward setting on completing the move task with-
out MCTS framework. As shown in Table 2, with the complete
reward, our network achieves best success rate in both 5-obj. and

17-obj. difficulty levels and comparable success rate in 9-obj. and 13-
obj. difficulty levels. The results validate that the terms contribute
to the learning of policy.

5 SCENE TRANSFORMER GAME MANIPULATION

5.1 User Interface of the Game for Synthetic Layouts
Fig. 2 illustrates the manipulation of the Scene Transformer game for
synthetic layouts. The current positions of objects are indicated by
solid colors. The target positions are indicated by the corresponding
transparent color.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

233:4 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Table 2. Success rates of network trained with different reward mechanisms
in different difficulty levels.

Rewards 5-obj. 9-obj. 13-obj. 17-obj.
w/o. Base 55% 70% 30% 5%
w/o. Repetition 80% 75% 25% 15%
w/o. Multi-arrival/leave 85% 60% 30% 10%
Complete 100% 70% 30% 25%

Fig. 4. The finger print represents a tap opertation. The arrow represents a
slip operation. (a) Select the item bounded in the dashed box. (b) Drag the
selected item. (c) Rotate the selected item.

Fig. 5. A failure case. The last move of this user’s record is shown in (b).

If a user taps on an object, the object is selected. Then both the
current position of the object and the target position are highlighted
by thick boxes. So the user can see the target position more clearly.

Under the selectionmode, the user canmove the selected object by
sliding it up, down, left, or right. The user can also tap on the target
position. If there is an accessable path from the current position to
the target position, the selected object will be moved to the target
directly. The accessable path is computed byA∗ searching algorithm.
With the selection mode, if the user taps on ground (grey areas)

or other objects, the former selection will be canceled.

5.2 User Interface of the Game for Real-World Layouts
The user interface of the game for scanned real-world layout data is
shown in Fig. 6. The left bar shows the time used, the information
of the selected item including the ID, target angle and the current
angle. The top shows the target layout, the bottom shows the current
layout.

Fig. 6. The finger print represents a tap opertation. The arrow represents a
slip operation. (a) Select the item bounded in the dashed box. (b) Drag the
selected item. (c) Rotate the selected item.

The item in solid color is at the target position with correct pose,
or it dose not reach the target position or has the wrong pose. User
can select a item tomove by tapping on the item in the current layout.
Then user can drag the selected item to somewhere by slipping the
screen. User can also rotate the item to the ideal angle by tapping
on the wheel of current angle.

6 RATIONALE BEHIND 2D REPRESENTATION
We focus on 2D in this work because: (1) 3D evaluation is much
more expensive, causing difficulty in training and testing. (2) It is
hard to collect human data in 3D scenes for evaluation due to the
difficult 3D manipulation of objects. (3) 2D movements can deal
with most scene arrangement scenarios.

7 DETAILS OF EXPERIMENT DATA

7.1 All Layouts used in Comparison Experiments
Fig. 7, 8, 9, and 10 show all used layouts in the comparison experi-
ment. Totally, there are 4 difficulty levels. In each level we generate
20 pairs of layouts. Each pair contains an initial layout and a target
layout. In the figures, the rectangles with different colors represent
different objects.

7.2 All Real-World Layouts used in Evaluation
All layouts used in our evaluation on real scanned data are shown in
Fig. 11. There are 20 layouts in total. The detailed data comparision
is shown in Table 3.

7.3 Failure Cases of Participants in Real-World Layouts
To figure out how users failed in some cases, we checked all failure
records and found that most participants gave up when the objects
blocked the way of other objects. One failure case is shown in Fig. 5.
In the last move, the user moved the object in the red dashed box
to the middle of the room which then blocked the objects at the
bottom-right corner of the room. Those failure cases have an average
number of steps of 17.3 which is a little bit higher than the average
number of steps of 15.7 in the success cases. It shows that the users
might have put efforts to solve the failure cases before they gave up.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

Scene Transformer: Automatic Move Planning for Scene Arrangement by Deep Reinforcement Learning (Supplementary Material) • 233:5

Fig. 7. The initial and target layouts of 5-obj. difficulty level used for the comparison experiments.

REFERENCES
Joshua A Haustein, Isac Arnekvist, Johannes Stork, Kaiyu Hang, and Danica Kragic.

2019. Learning Manipulation States and Actions for Efficient Non-prehensile Re-
arrangement Planning. arXiv preprint arXiv:1901.03557 (2019).

Jennifer E King, Vinitha Ranganeni, and Siddhartha S Srinivasa. 2017. Unobservable
monte carlo planning for nonprehensile rearrangement tasks. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 4681–4688.

Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan Laptev, Justin Carpentier, Mathieu
Aubry, and Josef Sivic. 2020. Monte-Carlo Tree Search for Efficient Visually Guided
Rearrangement Planning. IEEE Robotics and Automation Letters (2020).

Changkyu Song and Abdeslam Boularias. 2019. Object Rearrangement with Nested
Nonprehensile Manipulation Actions. arXiv preprint arXiv:1905.07505 (2019).

Haoran Song, Joshua A Haustein, Weihao Yuan, Kaiyu Hang, Michael Yu Wang, Danica
Kragic, and Johannes A Stork. 2019. Multi-Object Rearrangement with Monte
Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting. arXiv preprint
arXiv:1912.07024 (2019).

Weihao Yuan, Kaiyu Hang, Danica Kragic, Michael Y Wang, and Johannes A Stork.
2019. End-to-end nonprehensile rearrangement with deep reinforcement learning

and simulation-to-reality transfer. Robotics and Autonomous Systems 119 (2019),
119–134.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

233:6 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Fig. 8. The initial and target layouts of 9-obj. difficulty level used for the comparison experiments.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

Scene Transformer: Automatic Move Planning for Scene Arrangement by Deep Reinforcement Learning (Supplementary Material) • 233:7

Fig. 9. The initial and target layouts of 13-obj. difficulty level used for the comparison experiments.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

233:8 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Fig. 10. The initial and target layouts of 17-obj. difficulty level used for the comparison experiments.

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

Scene Transformer: Automatic Move Planning for Scene Arrangement by Deep Reinforcement Learning (Supplementary Material) • 233:9

Fig. 11. The initial and target layouts of real scanned scenes.
ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

233:10 • Hanqing Wang, Wei Liang, and Lap-Fai Yu

Table 3. The detailed step and trajectory length of Scene Transformer and
Human.

Scene Obj. Scene Transformer Human
No. of Travel No. of Travel
steps length steps length

1 6 6 233 11.4 805.8
2 10 13 304 23.3 1344.4
3 14 16 63 27.8 642.9
4 9 9 152 12.5 618.8
5 9 8 129 12.4 563.9
6 7 7 179 9.4 567.1
7 11 12 274 14.1 881.5
8 17 9 64 21.1 527.8
9 9 7 131 11.3 581
10 12 11 194 14 598.8
11 14 24 292 32.7 1191
12 6 8 106 26.6 992.6
13 10 43 610 23.4 1178.8
14 13 11 119 23.3 988.4
15 9 10 258 16.4 911.6
16 19 8 137 19.7 645.2
17 9 7 228 10.2 647
18 14 17 226 20.4 807.6
19 11 23 225 13 652.1
20 10 10 103 16.6 604

ACM Trans. Graph., Vol. 39, No. 6, Article 233. Publication date: December 2020.

