Crafting Dynamic Virtual Activities with Advanced Multimodal Models
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Figure 1: Given a virtual environment as the input, our method leverages multimodal large language models (MLLMSs) to automati-
cally generate contextually realistic character interactions. s, denotes scene snapshots at discrete keyframe ¢. s4 here features two
characters engaging in a conversation, an elderly female watching TV, and another character participating in a game of darts.

ABSTRACT

In this paper, we investigate the use of multimodal large language
models (MLLMs) for generating virtual activities, leveraging the
integration of vision-language modalities to enable the interpreta-
tion of virtual environments. Our approach recognizes and abstracts
key scene elements including scene layouts, semantic contexts, and
object identities with MLLMs’ multimodal reasoning capabilities.
By correlating these abstractions with massive knowledge about hu-
man activities, MLLMs are capable of generating adaptive and con-
textually relevant virtual activities. We propose a structured frame-
work to articulate abstract activity descriptions, emphasizing de-
tailed multi-character interactions within virtual spaces. Utilizing
the derived high-level contexts, our approach accurately positions
virtual characters and ensures that their interactions and behaviors
are realistically and contextually appropriate through strategic op-
timization. Experiment results demonstrate the effectiveness of our
approach, providing a novel direction for enhancing the realism and
context-awareness in simulated virtual environments.

Index Terms: Virtual humans, human-scene interaction, behavior
synthesis, multimodal large language models

1 INTRODUCTION

The generation of virtual environments and the simulation of hu-
man activities within these spaces are increasingly important in
computer graphics, computer vision, and robotics. Recent ad-
vances, including the availability of large-scale datasets and sophis-
ticated deep generative models, have significantly improved the ca-
pability to produce lifelike human-scene interactions.
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However, existing approaches face several challenges. Many
current methods primarily address the placement of virtual charac-
ters [77,75, 19, 78] based on low-level geometric and physical con-
straints, without adequately incorporating high-level contextual in-
formation such as the nature of the activities performed. Addition-
ally, although task- or instruction-specific motion synthesis meth-
ods [6, 61, 65, 66, 18, 72, 20, 27, 64, 79] have emerged, they often
overlook the dynamic interplay among multiple characters and their
interactions with surrounding objects, limiting realism and scenario
complexity. Addressing these limitations demands methods capa-
ble of interpreting and leveraging the semantic context and spatial
layout within virtual scenes, and correlating such clues with human
activities and behaviors.

Recent advances in language models, particularly those employ-
ing deep learning and transformer architectures [63] and support-
ing multimodality [55, 56, 2, 42], have revolutionized the field of
natural language processing and computer vision. These models
demonstrate remarkable capabilities in understanding and generat-
ing complex language and vision contexts. The integration of lin-
guistic strengths into multimodal large language models (MLLMs)
presents new opportunities for enhancing virtual activity genera-
tion: Leveraging advanced linguistic reasoning and visual under-
standing, MLLMs can interpret environments, understand character
dynamics, and generate contextually relevant interactions.

Motivated by these developments, our research aims to utilize the
potential of MLLMs in generating virtual activities, especially for
multi-character human-scene interactions involving multiple char-
acters. By integrating vision-language modalities through a Layout
Chain-of-Thought (L-CoT) prompting strategy, we enable MLLMs
to interpret virtual environments visually, understand semantic con-
texts, infer spatial relationships, and perform logical reasoning
when generating human activities. We propose a structured frame-
work that explicitly defines virtual activities in terms of character
poses, positional references, and detailed interactions on discrete
keyframes. Furthermore, our method employs an efficient opti-
mization with a Markov chain Monte Carlo (MCMC) sampling pro-
cess to precisely position virtual characters, ensuring natural, con-
textually consistent interactions aligned with their generated high-
level activity descriptions.



Generating contextually meaningful virtual activities holds great
potential in numerous virtual and augmented reality (VR/AR) ap-
plication scenarios, including training virtual agents for social sce-
narios, creating enhanced immersive VR and AR experiences, facil-
itating advanced human-robot interactions, and supporting virtual
storytelling and content creation.

The major contributions of our work include the following:

* Proposing a multimodal reasoning approach using MLLMs
for detailed interpretations of virtual environments;

* Formulating a structured representation of virtual activities to
effectively prompt MLLMs for context-aware, adaptive, and
realistic generation of multi-character interactions;

» Devising an efficient optimization strategy for realistic and
scalable character placement in virtual scenes.

2 RELATED WORK
2.1 Scene-Adaptive Activity Generation

The generation of scene-aware virtual human behaviors is pivotal
for creating realistic virtual environments. A key challenge in this
domain is the adaptive generation of virtual human poses within
input scenes. Savva et al. explored the relationship between the
geometries and functionalities of 3D environments and the corre-
sponding human poses and object arrangements, leveraging obser-
vations from human-scene interactions [59, 60]. Some recent meth-
ods utilizing deep generative models have focused on posing virtual
humans by considering factors such as geometry, semantics, affor-
dances, and contact points [77, 75, 19, 78].

Beyond static snapshots of human poses, the generation of
scene-aware human motion considers temporal dynamics and the
interactions between humans and their environments, guided by
specific tasks [5, 1, 52, 36], action labels [17, 51] or the surrounding
environments [6, 61, 65, 66, 18, 72, 20, 27, 64, 79]. There is also a
growing interest in integrating virtual humans into real-world envi-
ronments for augmented reality applications, highlighting the need
for adaptive and interactive behaviors [62, 39, 29].

While those methods mainly concentrate on the motion and be-
haviors of individual characters, our research shifts focus towards
scenarios involving multi-character interactions within scenes.
Some related researches that study detailed multi-character inter-
actions [30, 76, 37, 69], but overlook the correlations with the sur-
roundings. Crowd simulations provide strategies for driving large
groups of characters in environmental contexts; however, these ap-
proaches typically do not account for intricate interactions among
characters or the higher-level interpretation of the activities being
performed [49, 35, 80, 8]. Li et al. [40] addressed a closely re-
lated problem by proposing the synthesis of activity snippets that
depict sequenced multi-character and multi-object interaction sce-
narios. In comparison, our work focuses on adapting virtual ac-
tivities to given environments, rather than jointly creating virtual
environments. Whereas activity snippets [40] may face scalability
issues in larger group settings without extensive training data, our
approach leverages the knowledge embedded in MLLMs to facil-
itate large-scale, multi-character interactions within extensive en-
vironments, demonstrating a novel adaptation of these models in
generating contextually rich and dynamic virtual scenes.

2.2 Language Models for Activity Generation

Advancements in language models have significantly influenced re-
search directions such as activity generation and behavior mod-
eling. For example, LLMs can simulate human behaviors within
interactive virtual sandbox environments[50, 43]. More recent re-
search has investigated employing language models to generate de-
tailed human motion directly from textual inputs[14, 4, 81, 38], or

to produce motion sequences adapted to specific scenes and con-
texts [71, 68, 67, 74, 28]. Existing approaches also use scene graphs
that capture rich scene context to guide LLMs through high-level
activity or task planning [15, 41].

Recent models with vision-language modalities demonstrate
great power in various directions, like 3D scene understanding [24,
26, 23, 10, 11, 16] and VR/AR world enhancement [9, 34]. To
realize scene-aware activity generation, adopting vision-language
models is critical to understanding scene layouts and semantics.
These works provide insights into using MLLMs for an enriched
understanding and generation of activities within 3D environments.
Our approach similarly employs MLLMs to grasp the environmen-
tal cues of the target scenes, facilitating the creation of virtual activ-
ities that are both contextually aware and semantically compatible.

3 OVERVIEW

Figure 2 shows an overview of our approach. It begins with
enabling multimodal large language models (MLLMs) to inter-
pret virtual 3D environments through two types of scene clues:
area descriptions and multi-view image observations (Section 5).
To facilitate precise visual grounding, we adopt the Set-of-Mark
(SoM) [73], which explicitly labels object identities. We then em-
ploy a Layout Chain-of-Thought (L-CoT) prompting strategy, guid-
ing MLLMs through explicit reasoning steps to infer spatial adja-
cencies between areas and construct area-based scene graphs.

Using the interpreted environmental context, we then prompt
MLLMs to generate dynamic, context-aware virtual activities in-
volving multiple characters (Section 5.1). Each virtual activity
is structured as a sequence of discrete keyframes, where each
keyframe describes character poses, positional references, and de-
tailed interactions with objects or other characters.

Finally, to realize these high-level symbolic descriptions within
the 3D virtual environments, we apply an efficient optimization
strategy (Section 5.2). This procedure leverages Markov chain
Monte Carlo (MCMC) sampling to precisely position characters.
Animation clips corresponding to the generated descriptions are ap-
plied to produce realistic animations of the virtual activities.

4 UNDERSTANDING 3D ENVIRONMENTS USING VISION-
LANGUAGE MODELS

In the initial phase, we focus on enabling vision-language MLLMs
to understand virtual 3D scenes using combined visual and linguis-
tic information. We specifically use GPT-4o for all results.

4.1 Scene Clues Preparation

We provide MLLMs two types of scene clues: area descriptions
and multi-view image observations. These inputs help MLLMs in-
terpret scene layouts, spatial relationships, object shapes, function-
alities, and affordances. Area descriptions are later converted to
area-based scene graphs by the MLLMs.
Area-based Scene Graph. Scene graphs provide abstracts of spa-
tial layouts to MLLMs. In this work, we define simplified scene
graphs conveying only basic structural information, omitting spe-
cific numeric or specialized attributes: Instead of using a highly
structured scene graph representation with comprehensive details
encoded, which demands careful, object-specific design, we leave
such details to be understood using vision-language models without
requiring explicit, domain-specific attribute definitions.

Specifically, we first group scene objects into distinct clusters
called scene areas, considering distances and visibilities. Pairwise
visibility is determined if the two objects are visible to each other
(e.g., not separated by a wall). An area is modeled as a single node
in the scene graph. Scene area descriptions are composed into json
format as inputs for MLLMs.

To connect these area nodes to build a scene graph, one could
apply standard minimum spanning tree (MST) algorithms such as
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Figure 2: An overview of our approach. We first capture multi-view Set-of-Mark (SoM) [73] observations of the scene, enabling the MLLM to
construct an area-based scene graph and interpret spatial layouts. Next, the MLLM generates detailed descriptions of virtual activities at discrete
keyframes, specifying characters’ poses, positional references, and interactions. Finally, a 3D pose optimizer positions the virtual characters in
the scene. The example shows generated activity descriptions for a selected keyframe (s;) and their corresponding 3D realization.

Prim’s [53] or Kruskal’s [33]. However, we found that allowing
MLLMs to perform this task, guided by visual clues from multi-
view images, produces more accurate and spatially coherent results.
Given a fixed scene graph with abstract scene information, MLLMs
might overlook details that need to be inferred through visual clues,
and misinterpret spatial layouts. For example, identical graph dis-
tances could correspond to different actual spatial distances. Our
ablation tests in Section 6.2 further support this observation. Thus,
we defer this step to be finished by MLLMs as an explicit reasoning
step after interpreting the visual clues from multi-view images. An
example scene graph is visualized in Figure 2.

Multi-view Image Observations. We feed multi-view scene im-
ages to MLLMs, which help them recognize scene objects, their
functionalities, and affordances. All images are captured by a vir-
tual camera that navigates randomly to ensure comprehensive cov-
erage of the scene. This ensures diverse view angles and improves
the MLLMSs’ spatial reasoning and contextual understanding.

However, aligning recognized objects precisely with their scene
identities remains challenging for current MLLMs. To address this,
we employ the Set-of-Mark (SoM) [73] representations, where each
object is clearly marked in images with a unique ID label, facili-
tating consistent identification across different views. The marks
are based on instance segmentations sourced from the virtual 3D
scenes. Each object within the scene is assigned a unique ID for
subsequent reference when the view changes. In practice, we filter
out marks based on size, distance, visibility, and overlap criteria,
removing those that are too small, overly distant, significantly out-
side the field of view, or heavily occluded. By default, we remove
marks smaller than 4% of the image area, further than 10m from
the camera, partially out of view by more than 20%, or substan-
tially overlapped with other marks. In real-world applications, these
segmentations for markings could be obtained using state-of-the-
art segmentation methods like the Segment Anything (SAM) fam-
ily [31, 57]. To maintain consistent object identities across different
views, 2D segmentation results can be projected onto the 3D digital
twin. Alternatively, 3D segmentations can be directly applied, with
corresponding 2D segmentation masks rendered for each view.

To reduce information redundancy, we keep a minimum subset
of views that still cover all needed scene objects and preserve nec-
essary scene clues. Starting from an empty set, we iteratively select
images that cover the largest number of not-yet-covered objects un-
til all objects are covered, and get an initial view coverage set.

Another important consideration is to ensure view traversability,
that the views form a connected graph under the rule “two views
are adjacent if they share at least one object”. This is an essential
consideration for the Layout Chain-of-Thought (L-CoT) we use to

Candidate view

Initial view coverage set

Figure 3: An illustration of maintaining connectivity during the se-
lection of multi-view observations. The initial coverage set includes
views x and z covering distinct scene objects. A candidate view y is
selected to connect x and z by capturing shared objects.

guide MLLMs in understanding the environments, of which details
will be discussed later. Continuing from the initial coverage set,
we keep selecting additional views, prioritizing views that connect
two or more previously disconnected components, meanwhile max-
imizing the number of shared objects with the images in those com-
ponents, as depicted in Figure 3. Note that traversability cannot be
guaranteed (e.g. when an area is in a separate room), and in such
cases we process the remaining unconnected areas with MST.

4.2 Layout Chain-of-Thought Prompting

Aligning with the principles behind Chain-of-Thought [70], which
simplifies complex queries into manageable steps, we propose Lay-
out Chain-of-Thought (L-CoT) for layout understanding. This in-
volves guiding MLLMs through a sequence of reasoning steps: We
first require MLLMs to explicitly identify objects associated with
their areas according to the area descriptions. Next, MLLMs should
list shared objects appearing in different views as an intermediate
reasoning step, and further determine the views’ spatial adjacen-
cies. Areas’ adjacencies could be reasoned if one view contains
objects from multiple areas, or reasoned from multiple views: For
instance, while each view shown in Figure 4 focuses on a distinct
small area of the scene, the shared objects (sofa and tea table) sug-
gest the proximity between these areas. Finally, MLLMs should
use the reasoned adjacencies as edges to complete the area-based
scene graph, given areas defined before as nodes.

L-CoT explicitly guides MLLMs through intermediate reason-
ing steps to interpret spatial layouts. This reasoning approach im-
proves the model’s ability to accurately infer spatial relationships,
thereby enhancing the realism of subsequent virtual activity gener-
ation, which also uses L-CoT and is discussed in Section 5.



Figure 4: The proximity between areas captured by two camera
views is determined following the Layout Chain-of-Thought (L-CoT)
prompting, given their shared common objects.

5 DYNAMIC VIRTUAL ACTIVITIES

In our work, a virtual activity is formally defined as a tuple (C, 1),
summarizing various components essential for activity representa-
tion in virtual environments. The set C = {c} represents the char-
acters involved in the activity, with each character c is identified by
a unique ID and associated with a specific role, which could range
from social roles such as a parent to professional roles like a chef.
The snapshots 7 = {St}t:l,Z.,...,T depicts a sequence of scene states
across keyframes from 1 to 7', thereby discretizing the activity into
manageable segments.

5.1 Generating Activity Descriptions with MLLMs

A core aspect of our approach is the generation of snapshots 7 of the
activity using MLLMs. Each snapshot s; provides all characters’
states at a specific keyframe ¢, expanded into a series of detailed de-
scriptions such that s = {d}. A single description d details an indi-
vidual character’s pose and ongoing activity at the given keyframe.
We define the following attributes for structuring each description

d=(a,p,r,(v,B)):
1. Subject a, which is the focal character of the description.

2. Pose p, which distinguishes among three fundamental poses:
standing, sitting, and lying. These poses cover a majority of
life scenarios as the base, and actual poses can be further de-
tailed with exact body parameters defined in Section 5.2 and
specific animation clips (e.g. sitting + talking).

3. Positional Reference r, which enhances layout comprehen-
sion and activity planning through MLLMs by anchoring
characters to specific furniture or appliances corresponding to
their poses (i.e. standing near, sitting on, and lying on).

4. Interaction (v, ), which enumerates the interactions involv-
ing the described character. Each interaction is characterized
by a verb v (e.g., “read”, “talk t0”) and a grammatical object
B (e.g., object_10-book, character_2) that ¢ interacts with.

This structured format leverages MLLMSs’ capabilities in inter-
preting and generating complex scenarios, thereby facilitating de-
tailed and dynamic representations of virtual interactions.

Building on the foundation established in the previous phase,
where MLLMs have gained an understanding of the scene layout
and objects inside the scene, we next instruct MLLMs to fill out
details of the activities occurring within each keyframe. The ob-
jective is to enrich the snapshot s, = {d} for every keyframe 7 by
generating the characters’ actions and interactions within the scene.

(a) Standing near

(b) Sitting on (c) Lying on

Figure 5: The free spaces considered for different character poses
during optimization: (a) standing near the furniture, (b) sitting on the
predicted sitting points, and (c) lying on a supporting surface.

For all character in a keyframe, the MLLMs are tasked with detail-
ing their descriptions following the defined format. To ensure ac-
curate spatial reasoning, we prompt MLLM:s to explicitly describe
intermediate reasoning steps when characters move between differ-
ent areas, referring to the area-based scene graph and following the
Layout Chain-of-Thought (L-CoT) prompting approach. An exam-
ple prompt illustrating this strategy is shown in Figure 6.

5.2 Accommodating Characters in 3D Scenes

Given the generated activity by MLLMs, we move forward to popu-
late the virtual characters into the virtual environments as specified.
This step employs an optimization technique akin to that described
in [39, 40], utilizing simulated annealing [32] with a Metropolis-
Hastings state-search step [47, 21] to optimize the positioning and
poses of characters. The exploration of solution space is conducted
via Markov chain Monte Carlo (MCMC) sampling, achieving ef-
ficiency and near real-time character population. This efficiency
is attributed to the predefined positional references and interaction
details, which significantly narrows the potential placement range
constrained by the generated high-level descriptions.

A character’s pose is parameterized as (p, 6y, 6;,) conditioned on
the fundamental pose, where p denotes the 3D position, 6, the body
rotation relative to the positional reference r, and 6y, the head rota-
tion relative to the body, with both simplified rotations occurring
around an axis perpendicular to the floor. This distinction between
body and head rotations mirrors real-life scenarios, such as a person
sitting on a chair who may rotate their head to look at someone or
something without significantly rotating their body. The spatial al-
location for character placement varies with the pose as illustrated
in Figure 5: for a standing pose, movement is restricted to the prox-
imity of an object; for a sitting pose, GoalNet [19] is used to predict
multiple sitting points (i.e., positions and forward directions for the
hip joint) and orientations; for a lying pose, the character is placed
on the largest supporting surface available on appropriate furniture.

The placement process involves specific Markov chain dynamics
to propose moves during MCMC sampling, detailed as follows:

1. Translation: For a standing or lying character, the position
can be adjusted as p — p + Op, following a bivariate normal
distribution. Translation occurs on the xy plane, with height
fixed during initialization given the positional reference r’s
geometry. For the sitting pose, a proposed translation moves
a character from the occupied sitting point to another nearby.

2. Body Reotation: A character’s body rotation can be adjusted
as 0, — 6, + 86, following a normal distribution.

3. Head Rotation: Similarly, the head rotation can be adjusted
as 0, — 0;, + 66, following a normal distribution. For the
lying pose, the head rotation is fixed as 0.



System: You are a visual assistant interpreting 3D scenes containing multiple objects. Inputs provided to you: 1. Scene areas
(JSON), each including an “objects” list; 2. Multi-view scene images with unique object IDs labeled at object centers.

You must explicitly perform two tasks below, following the exact steps:

Task I. Build a Scene Graph:

Step 1. List objects grouped by their areas clearly from all provided images.

Step 2. Identify visual adjacencies between scene views based on objects appearing in multiple images from Step 1.

Step 3. Construct a Scene Graph (JSON), using areas as nodes, with an additional “adjacent” attribute, and connect nodes (areas)
explicitly if their adjacencies are confirmed by shared objects. Clearly state reasons for each connection using evidence from
previous steps.

Task II. Generate a Virtual Activity:

Step 1. Decide the number of characters appropriate for the scene scale, and assign unique IDs and relevant roles (family/social/pro-
fessional) based on scene context.

Step 2. Activity creation (sequence of keyframes): Each keyframe is a list of all characters’ states at that time. A character’s state

9

is defined as: (ID, pose, reference, interaction), with “ID” being the assigned character ID, “pose” being “standing”, “sitting”, or
“lying”, “reference” being the object for “standing nearby” or “sitting on” or “lying on”, “interaction” being a tuple (type, interactee)
where “type” is the action performed (e.g., “talk to”, “use”) and “interactee” is the character/object involved in interaction. Ensure
continuous transitions between keyframe: Every change in a character’s state triggers a new keyframe. When changing states,
please clearly justify your reasoning. For movements to a new “reference” object, explicitly describe intermediate steps based on
the scene graph and shared object adjacencies observed in the images.

Provide explicit, structured answers following these guidelines.

for sample in fewshot_samples:

4 N
User: {“area_0”: {“objects”: [“object_0-sink”, “object_1-stove”, “object_2-cooktop™]}, “area_1": {“objects”: [“object_3-
bookshelf”, “object_5-bed”]}, “area_2” : {“objects™: [“object_4-tea_table”, “object_6-chair”, “object_7-chair”, “object_8-
table”, “object_9-standing_lamp”, “object_10-tv”, “object_11-sofa”]} }

7 s

Assistant: Task I.1: View 0: area_0: [object_0-sink, object_1-stove, object_2-cooktop], area_2: [object_4-tea_table, ob-
ject_10-tv]; View 1: area 2: [object_4-tea_table, object_6-chair, object_7-chair, object_8-table, object 9-standing_lamp,
object_11-sofa]; View 2: area_1: [object_3-bookshelf, object_5-bed]; View 3: area_1: [object_3-bookshelf], area_2: [ob-
ject_6-chair, object_7-chair, object_8-table].

1.2: View 0 and View 1 are visually adjacent because they both include object_4; View 2 and View 3 are visually adjacent
because they both include object_3; View 1 and View 3 are visually adjacent because they both include object_6, object_7
and object_8.

1.3: View 1 contains area_0: [object_0, object_1, object_2], and area_2: [object_4, object_10], thus area_0 and area_2 are
adjacent; View 4 contains area_1: [object_3, object_5] and area_2: [object_6, object_7, object_8], thus area_1 and area_2 are
adjacent. Overall, the scene graph can be represented as:

“area_0” : {“objects”™: [“object_0-sink”, “object_1-stove”, “object2-cooktop”], “adjacent” [“area_2”]}, “area_1” :
{“objects”: [“object_3-bookshelf”, “object_5-bed”], “adjacent”: [“area_2"]}, “area_2” : {“objects”: [“object_4-tea_table”,
“object_6-chair”, “object_7-chair”, “object_8-table”, “object_9-standing_lamp”, “object_10-tv”, “object_11-sofa”], “adja-
cent”: [“area_0”, “area_1"]}}

Task II.1: Based on the scale of the scene that looks like a studio apartment for one to two people to live in, I’ll create two
virtual characters: character_0: Husband; character_1: Wife.

IL.2: keyframe O: (character-0, sitting, object_11-sofa, (read, newspaper)). Thoughts: character_0 starts with reading
newspaper. (character_1, lying, object_5-bed, (sleep, none)). Thoughts: character_1 starts with sleeping on the bed.
keyframe 1: (character_O’s state does not change) (character_1, standing, object_0-sink, (get water, object_0-sink)).
Thoughts: character_1 wants to get some water, and the possible destination is object_O-sink. It needs moves
area_l:object_5-bed — area_2 — area_0:object_0-sink, according to the scene graph.

keyframe 2: (character_0, sitting, object_6-chair, (talk to, character_1)). Thoughts: character_0 goes to the dining area to
meet character_1. It needs moves area_2:object_11-sofa — area_2:object_6_chair, according to the scene graph. (character_1,
sitting, object_7-chair, (talk to, character_0)). Thoughts: character_1 goes to the dining area to meet character_0. It needs
moves area_0:object_0-sink — area_2:object_7_chair, according to the scene graph.

N J
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Figure 6: An example of an MLLM prompting format used in our method. The prompt explicitly guides the model to reason through character
activities, spatial transitions, and interactions within the environment.



The father is standing near the stove and cooking

The mother is sitting on sofa and watching TV

The daughter is sitting on a chair and enjoying a dish
. The son is standing by the fridge and getting snacks

The father is standing near a chair and stretching

The mother is sitting on a chair and using cellphone
The daughter is sitting on a chair and playing toy
The son is standing near the shelf and arranging items

The father is sitting on a stool and relaxing

The mother is lying on the sofa and using cellphone
The daughter is standing near the sink and using it
The son is lying on the bed and sleeping

Figure 7: Selected keyframes showcasing an “apartment” activities synthesis, arranged sequentially from left to right.

Interactions generated by MLLMs are converted into constraints,
addressing both positional and rotational requirements for realistic
interactions, closely mirroring the method described in [40]. Two
constraint templates are defined as:

1. Positional constraints, which constrain the distances be-
tween a character a and another identity b (a character or and
objects). The distance between a character and the positional
reference can naturally be satisfied given the definition. How-
ever, if the character has physical interactions with certain ob-
jects, such distances should be further considered. For exam-
ple, to use a computer, a desired threshold distance D can be
necessary to guarantee the computer is accessible. The tem-
plate is formulated as:

Cp (Cl, b) — max (1 _ eD—distance(aA,b) , 0) (1)

2. Rotational constraints, which constrain the direction of a
character by measuring the angle between two directions X
and y. For example, if a character is looking at another, it can
be desired that the facing direction of the character matches
the direction towards the other. The template is defined as:

Cofi ) = 2T, @
We employ an LLM agent to map textual descriptions to con-
straints. Specifically, the agent translates textual interactions into
positional and rotational constraints using the two templates. It also
determines appropriate threshold distances D based on its learned
common knowledge (e.g. 0.5m for interacting with a computer).
Optimization treats these interactions as independent activity
groups ¢, where a single character, or a few characters interact-
ing with each other, form an independent group, optimizing their
poses jointly. In some cases, characters performing their individual
activities can also be grouped if they are assigned to the same posi-
tional reference. For example, poses of two characters sitting on the
same sofa should be considered together to avoid interpenetration.
The optimization within ¢ uses a Boltzmann-like objective:

f(@)=e 1€, 3)

where C(¥) represents the constraints within ¢ and ¢ is the tem-
perature parameter decreasing over iterations. A proposed move %’
with the Markov chain dynamics is accepted with a probability:

(4’4 = min [%1] ~min[e} €€ 1] )

This pose optimization ensures a realistic portrayal of charac-
ters in the virtual environment, aligning with their textual activities
and interactions. Animation clips corresponding to the interaction
verbs from the generated activity descriptions are applied to the
characters. For activities spanning multiple discrete keyframes, if a
character moves between different positions, a walking animation
is automatically inserted. These movements follow collision-free
trajectories computed using the A* algorithm.

6 RESULTS
6.1 Virtual Activity Generation

We demonstrate the effectiveness of our approach by generating
virtual activities across three synthetic scenes of varying scales: a
small apartment (4 characters, Figure 7), a medium restaurant (31
characters, Figure 8), and a large office (40 characters, Figure 9).

In the apartment scene in Figure 7, characters engage in vari-
ous household activities that reflect typical family life dynamics.
A highlighted keyframe exemplifies the details: the father cooking,
the mother watching TV, the daughter at the dining table, and the
son getting snacks from the refrigerator. The generated poses and
actions demonstrate that our method effectively produces contextu-
ally coherent and realistic household interactions.

The restaurant scenario in Figure 8 showcases our approach’s
adaptability by generating a diverse array of character behaviors
appropriate for a public dining setting, from dining and interacting
with wait staff to engaging in conversations. The accurate depic-
tions of different activities tailored to the restaurant showcase the
creativity in handling predefined roles and contextual interactions.

For the large-scale office scenario in Figure 9, our generated re-
sults capture a professional environment with characters perform-
ing tasks such as working on computers, participating in meetings,
or engaging in discussions. The characters are posed in a manner
that suggests active engagement with their tasks and surroundings,
reflecting the complexity of the generated activities.

Additionally, we validate the applicability of our approach to AR
scenarios by testing it on real-world 3D scans from Matterport3D
dataset [7]. Figure 10 shows keyframes from two real-world scenes,
highlighting lifelike activities and demonstrating our method’s po-
tential for generating realistic human-scene interactions in practical
AR applications, utilizing 3D scans to serve as AR digital twins.



Three customers sitting on bar stools are using cellphone; using laptop; waiting (1) The bartender is serving wine to a customer; The waitress is collecting glasses
The bartender is making drink; The waitress is checking the menu A customer is leaving the scene

The host and a customer are talking to each other at the reception desk The husband is paying the bill; The wife is waiting
Three family members are sitting around a table @ The waitress is cleaning the table The food critic is discussing with the chef

Two chefs are discussing near a food critic . Two couples are seated at separate tables . The waitress is explaining dishes to customers
Some solo diners (1) Four friends chatting in a private room The waiter is taking an order from the customer

@ A waiter is serving the elderly couple . A waiter is taking an order from the customer . The waiter is laying out silverware () Two couples are seated at separate tables

Figure 8: Selected keyframes showcasing an “restaurant” activities synthesis, arranged sequentially from left to right.

Work zone 1 - Most employees are working on computers () Work zone 1 - Most employees are working on computers
Work zone 2 - Some employees are in discussions Work zone 2 - Most employees are working on computers
The CEO and the CFO are discussing The legal advisor is consulting the CEO
An administrative assistant is assisting the CEO @ The supply chain manager and the assistant are organizing files
. The development and the risk t are di ing The sales representative is talking to the receptionist at the front desk
The supply chain manager is talking to the receptionist at the front desk @ The operations coordinator is scheduling team tasks
@ The product manager and the content strategist are brainstorming ideas @ The CFO is leading a meeting

() The manager is in an online meeting in a conference room

Figure 9: Selected keyframes showcasing an “office” activities synthesis, arranged sequentially from left to right.
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Figure 10: Keyframe snapshots in the 3D scans of two real scenes.

user, sitting, |-sofa, [(use, laptop)]
friend, sitting, 1-sofa, [(use, ccllphone)]

user, standing, 2-table, [(idle, none)]
friend, sitting, 6-chair, [(talk to, user)]

Figure 11: Interactive activity generation in response to user input.
When the user avatar (white stickman) takes an action, we fix both
the corresponding prompt and 3D pose, then run our method to gen-
erate context-aware behaviors for the other characters.

Across all scenes, the attention to spatial dynamics and interac-
tion fidelity is evident. Characters are placed and engaged in a man-
ner that authentically reflects the generated virtual activities, show-
casing the adaptability of our method to diverse environments and
its effectiveness in creating believable, interactive scenarios. The
outcomes validate the generalizability of our approach, demonstrat-
ing its scalability and the significant potential of applying MLLMs
in enriching virtual experiences through the generation of contex-
tually appropriate and dynamic virtual activities.

Our approach naturally supports dynamic and interactive activity
generation. As shown in Figure 11, once a user performs an action,
we fix the corresponding prompt to reflect the user’s behavior and
run our method to generate responsive behaviors from other char-
acters. The 3D pose optimizer also incorporates the user avatar’s
pose as a constraint: For instance, when both the user and a vir-
tual character sit on the same sofa, the character’s placement avoids
interpenetration with the user avatar.

The most closely related work to ours is [40], which is, how-
ever, not directly comparable. [40] learns human-scene interactions
from video data, making it heavily reliant on the quality of the train-
ing data, particularly in terms of the sequence length (number of
frames) and the scene scale (number of people and objects). We
conducted preliminary tests using it in a restaurant setting, one of
the dominant scene types in its training set. In controlled cases with
fewer than 8 characters, the generated behaviors were generally rea-
sonable. However, as the scene scale increased, the model began
to fail. It exhibited unstable behaviors such as repeatedly adding
new characters without meaningful interactions and subsequently
removing them in the next keyframe. These issues suggest that [40]
does not generalize well to larger-scale or more complex scenes
without significant additional training. In contrast, our method does
not rely on pre-collected interaction sequences or scene-specific
training data. Our framework can interpret arbitrary scenes, rea-

Without L-CoT

Without vision inputs

Figure 12: Ablation examples. Left: Without explicit spatial reasoning
from L-CoT, the model may select suboptimal, distant destinations
(red trajectories) rather than more suitable nearby alternatives (green
trajectories). Right: Without vision inputs, the model may choose in-
appropriate or incorrectly oriented objects for interactions, resulting
in unnatural or inaccessible character poses (red boxes). Incorporat-
ing visual guidance ensures contextually appropriate object selection
and natural interaction poses (green boxes).

son about spatial and social contexts, and generate adaptive multi-
character activities at scale. Furthermore, our approach has demon-
strated generalizability across diverse scene types without retrain-
ing or domain adaptation. We scale up to 40-character scenes with
stable behaviors and consistent interaction logic.

6.2 Ablation Tests

To evaluate the effectiveness of L-CoT and the vision inputs used
in our work, we accordingly conducted two ablation tests.

We first assessed the activity generation without L-CoT. Given
only area descriptions and multi-view scene images, the MLLM
can still recognize objects and their visual appearance effectively.
However, without guiding it to make explicit spatial reasoning us-
ing L-CoT, the MLLM struggled to generate logically consistent
activities. As illustrated in Figure 12 (top-left), when prompted to
move the character sitting on a chair to “use toilet” next, the model
randomly selected one of two bathrooms due to the lack of spatial
understanding. Without L-CoT, it occasionally chose a bathroom
located inconveniently inside a bedroom (red trajectory). In con-
trast, the model reliably identified the nearest and most suitable
bathroom (green trajectory) with L-CoT. Similarly, in Figure 12
(bottom-left), without L-CoT, the model inefficiently moved a char-
acter, who obtained an apple from the kitchen refrigerator, to “use
sink” to wash the apple in a distant bathroom (red trajectory), in-
stead of just using the adjacent sink in the kitchen (green trajectory).

We also examined the role of vision inputs in the system. Some
recent approaches use scene graph as the only input to LLMs for
human activity generation [15, 41], but rely on carefully designed
scene graph representations capturing symbolic concepts such as
traversability, objects, and people/agents [3, 58]. We used scene
graphs generated by a standard MST algorithm in this test, provid-
ing MLLMs with general spatial layouts but lacked detailed visual
information such as object shapes and poses. For instance, as illus-
trated in Figure 12 (top-right), when relying solely on the simpli-
fied scene graph, the model assigned the character to a chair that
resulted in an unnatural and uncomfortable pose (red box) to per-
form the “watching tv” activity. With visual guidance from images,
the MLLM avoided inappropriate chairs, resulting in more natural
and realistic character poses (green box). Similarly, in Figure 12
(bottom-right), the character sat on a chair facing away from the
desk and positioned farther from it, rendering the desk inaccessible
for work (red box). With visual inputs, the model correctly selected



Table 1: Each cell shows the selection rate (SR,,,s) of our method
over manual designs (percentage * standard error), along with the
p-value from a Chi-square test under the null hypothesis of no pref-
erence difference. The four evaluation metrics are: reasonableness
(M"), naturalness (M"), understandability (M), and overall (M?).

Metrics Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

M SRours 51+5.00 | 48+5.00 | 49+5.00 | 43+4.95 54+4.98
p-value | 0.84 0.69 0.84 0.16 0.42

M SR s 53+4.99 55+4.97 56+4.96 | 48+5.00 | 44+4.96
p-value | 0.55 0.32 0.23 0.69 0.23

M SR urs 47499 | 49+5.00 53+4.99 | 45+4.97 51+5.00
p-value | 0.55 0.84 0.55 0.32 0.84

Mo SR ours 45+4.97 54+4.98 59+4.92 | 5245.00 | 47+4.99
p-value | 0.32 0.42 0.07 0.69 0.55

a chair closer to the desk and oriented appropriately, enabling nat-
ural and functional interactions (green box). While detailed scene
graphs designed with comprehensive spatial and object-specific at-
tributes might improve results as well, creating such representations
for diverse scene types is challenging. Therefore, directly leverag-
ing visual inputs offers an efficient and effective solution.

6.3 Perceptual Study

We conducted a perceptual study, approved by the Institutional Re-
view Boards, to evaluate the quality of virtual activities generated
by our method compared to manual professional designs. We in-
vited 5 technical artists, each with over 5 years of professional
Unity3D experience, to create virtual activities in 5 different small
virtual scenes (scene 1, 2: apartments; scene 3: barbershop; scene
4: bar; scene 5: office). They were informed to include a desired
number of virtual characters, and assign roles to all. They were
asked to create activities of at least 8 keyframes: in each keyframe,
they described all characters’ behaviors and states, and adjusted
their poses and selected proper animation clips to match the con-
text they wanted. The manual creation mainly included clicking
and dragging operations using our Unity3D designer tool.

For each manual design, we summarized all characters’ activi-
ties using texts, and used these summaries together with characters’
roles and the number of keyframes as additional constraints in the
prompt, ensuring contextual similarities for fair comparison.

We recruited 100 participants in Amazon Mechanical Turk, 77
males and 23 females with ages ranging from 25 to 52 years, for
this study. We animated both manually created and automatically
generated activities, and rendered video recordings for all. For each
participant, we showed them all 5 scenes, each consisting of a result
under designer condition and another under ours condition. The
study followed a two-alternative forced choice (2AFC) format: for
each paired video recordings (randomly shuffled), they watched and
chose a better one regarding each of the four evaluation metrics:

* Reasonableness (M"): How reasonable and contextually ap-
propriate are the characters’ actions and poses, given the scene
and the described activity.

* Naturalness (M"): How natural, and lifelike are the charac-
ters” movements and body poses.

 Understandability (M"): How easy is it to understand what
the characters are doing by watching the video.

* Overall (M?): General preference considering all aspects.

The results in Table 1 shows the numerical results. The selection
rates for ours (SR,,s) were generally close to 50%, indicating simi-
lar preferences to designer results. A Chi-square test confirmed that
the differences were not statistically significant (p > 0.05), support-
ing the conclusion that our method produces results of comparable
perceptual quality to human-designed content.

For efficiency, professional designers spent 13—32 minutes per
scene. Our method completed all scenes in 3—5 minutes, including
image processing, MLLM generation, and 3D pose optimization.

7 LiMmITATIONS AND FUTURE WORK

While our method demonstrates promising results, several limita-
tions remain. MLLMs could still struggle when processing scenes
or activities with extended contexts, such as large environments or
activities of long keyframe sequences. For instance, in our office
scene, although the generated activities mostly matched the envi-
ronment, certain social conventions, such as employees having as-
signed desks, were overlooked. We found that generating fewer
keyframes per query, rather than requesting multiple keyframes at
once, improves context consistency and robustness. It is worth fur-
ther exploring hierarchical reasoning methods, and incorporating
explicit knowledge about social or professional norms, which might
allow MLLMs to maintain context coherence over longer activity
sequences and across larger spaces.

Additionally, our current method relies on predefined animation
clips tied directly to interaction verbs described by the MLLMs,
which may lead to repetitive animations across different charac-
ters performing similar actions. Although it can be easily extended
by adding more animations and interaction verbs to support richer,
more diverse behaviors, another promising improvement would be
integrating generative motions [48, 22, 54, 25] to allow smoother,
more diverse, and adaptive animations that reflect detailed varia-
tions between characters and interactions.

Our method separates the process into two stages: activity
reasoning with an MLLM and 3D pose optimization. This ef-
fective modular design opens up an interesting direction for fu-
ture research—enabling MLLMs to directly generate human poses.
Achieving this goal would require aligning the language modality
with parametric human models such as SMPL [46]. Recent work
has begun exploring the use of MLLMs to generate SMPL param-
eters directly [13, 44, 45, 12], reflecting growing interests in this
area. However, current approaches remain limited in their ability
to model complex multi-character interactions and scene-aware be-
haviors. Extending MLLMs to reason about and generate physi-
cally and socially plausible multi-character poses remains a chal-
lenging yet promising direction for future work.

8 CONCLUSION

In this work, we propose a novel framework that enriches vir-
tual environments with realistically virtual activities, leveraging
the advanced capabilities of multimodal large language models
(MLLMs). By integrating vision-language modalities with Lay-
out Chain-of-Though (L-CoT) prompting, our approach enables
MLLMs to interpret spatial and semantic cues from virtual scenes
and generate context-aware, detailed descriptions of adaptive ac-
tivities. These descriptions, rich in contextual understanding, lay
the groundwork for the precise characters’ placements within the
virtual space. Our approach ensures that characters are not just ac-
curately placed but are also seemingly engaged in believable inter-
actions, thanks to a robust optimization framework that aligns with
the structured format of activity descriptions.

The adaptation of MLLMs for virtual activity generation under-
scores their potential in crafting complex, dynamic, and immersive
scenarios. The implications of our findings suggest promising av-
enues for enhancing user experiences for applications in VR/AR,
gaming and Al-driven storytelling. The adaptability and scalability
of our method suggest its applicability across a broad spectrum of
virtual environment creations such as future metaverse experiences.
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