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Abstract— This paper presents an easy-to-deploy, virtual
reality-based teleoperation system for controlling a robot arm.
The proposed system is based on a consumer-grade virtual
reality device (Oculus Quest 2) with a low-cost robot arm (a
LoCoBot) to allow easy replication and set up. The proposed
Work-from-Home Virtual Reality (WFH-VR) system allows the
user to feel an intimate connection with the real remote robot
arm. Virtual representations of the robot and objects to be
manipulated in the real-world are presented in VR by streaming
data pertaining to orientation and poses. The user studies
suggest that 1) the proposed telerobotic system is effective under
conditions both with and without network latency, whereas a
method that simply streams video does not. This design enables
the system implemented at an arbitrary distance from the actual
work site. 2) The proposed system allows novices to perform
manipulation tasks requiring higher dexterity than traditional
keyboard controls can support, such as setting tableware.
All results, hardware settings, and questionnaire feedback
can be obtained at https://arg-nctu.github.io/projects/vr-robot-
arm.html.

I. INTRODUCTION

The COVID-19 epidemic has prompted many people to
work remotely from home in order to avoid in-person ex-
posure at the work site. Nonetheless, many tasks requiring
specialized skills and experience cannot be autonomously
executed by robots reliably under actual uncertainty. Tele-
operation solutions are helpful in these situations [1], [2];
however, the conventional approach using a 2D interface can
be very cumbersome [3], particularly when operators are
required to manage their views of the scene and command
robot actuators using a keyboard and/or mouse [4]. Recent
advances in Virtual reality (VR) devices have made it far
easier to work remotely by immersing operators in a higher-
fidelity virtual environment. VR provides an interface that
allows users to specify points and transformations in an
intuitive manner, but any communication with a remote
system involves a signal delay, particularly in systems that
depend on sensors.

In the current study, we employed a consumer-grade VR
device (Oculus Quest 2) in fabricating an user-friendly virtual
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Fig. 1. A user controls a LoCoBot remotely to set up a dining table via
virtual reality.

reality-based teleoperation system for controlling a low-cost
robot arm (LoCoBot). The mobile base is kept stationary for
this study. LoCoBots are are commonly available and can be
deployed at scale.

As shown in Fig. 2, the user obtains visual feedback
through a VR headset. The user assigns the desired location
for the end point of the robot simply by manipulating a
VR controller. The VR interface includes a real-time image
feed as well as its virtual counterpart, which is composed of
3D models. The two images are linked to the movement
of the robot within the context of the surrounding area.
Virtual counterparts are generated by estimating the pose of
actual object via pose-estimation method. Thus, even when
the actual objects are partially occluded in streaming image,
the entire shape of the virtual counterpart can be seen in VR.
This makes it easier for the user to operate the robot arm and
interact with objects, while checking the state of the actual
object via camera feeds. Our interface can display not only
the actual robot state (opaque robot arm in Fig. 2) but also
the commands of the end point via the user’s VR controller
(transparent virtual fixture in Fig. 2). Besides, pressing the
button on the VR controller can deliver the commands to the
actual robot. The two main movement functions (adjusting
the opening of the gripper, and moving the end-effector)
only track the user’s motions when a specific button is
pressed, in order to eliminate unintentional movements of
the robot. Further, through transparent virtual fixture, the user
can practice and pre-see what the robot arm will do before
making the orders.

There has been significant attention and competition [5]
with regard to service robots’ grasping and manipulation
tasks, such as setting up a dining table. Through virtual
reality, our users controlled a robot arm to arrange tableware



(e.g., plates, forks) to match target positions and to perform
tasks (e.g., pouring water). We recorded the time for perform-
ing different tasks and the users’ feedback about using our
system. The functionality of the system was assessed in user
studies involving participants with no previous experience
performing such operations. The major contributions of this
work include the following:

• Effectiveness of visualization methods under reduced
frame rate. The proposed VR robot teleoperation sys-
tem, in which 3D virtual counterparts are presented via
a virtual interface, was found effective against decreased
frame rate compared to video stream visualization
methods. Different manipulation strategies adopted by
different participants are analyzed.

• Efficacy of VR for the group with/without previous
demonstration vs. conventional keyboard control
methods. We evaluate the VR robot teleoperation sys-
tem using different dining table tasks and comparing it
with alternative approaches keyboard control via a 2D
screen.

• Evaluation of how long it takes to master the
teleoperation for novice participants. The efficacy of
the proposed system was demonstrated in a user study
involving novice participants.

II. RELATED WORK

A. Telerobotics

Teleoperation by a human operator is often the only practi-
cal alternative when dealing with grasping and manipulation
tasks that are too specific for autonomous solutions [4]. Teler-
obotic systems implement commands and relay information
back to the operator. Control architectures can be classified
as (1) direct control, (2) supervisory control, and (3) shared
control [6]. Direct control implies that all slave operations
are controlled directly by the user via a master interface,
such that the system does not require innate intelligence
or the ability to operate autonomously. Supervisory control
implies a sparse connection between the user and a largely
autonomous telerobot. In these systems, the operator sends
only high-level commands, and the telerobot refines the
tasks autonomously. One approach to supervisory control
involves telesensor programming [7], in which robot tasks
comprise elementary moves representing different subtasks
described by the initial and final states. The transition from
one subtask to the next subtask (i.e. the recognition that
the goal state of the elemental move has been reached)
is performed heuristically. Shared control implies that in
the execution of a task, the commands are shared by the
operator (direct control) and the robot (local autonomy).
Telerobotic systems that suffer from significant latency tend
to benefit from sensor-based or model-based programming.
Some researchers have investigated recreating the remote
environment with stimulated time delay model. By using
Augmented reality to allow a operator to teach and operate
a robot arm to do manipulation tasks. [8]. Our user studies
were carried out at a real network connection to examine

the effects of the poor network connection on novice/expert
participants.

B. VR Teleoperation

Intuitive interaction is the cornerstone of efficient task exe-
cution in teleoperations. However, most conventional teleop-
eration schemes rely on computer monitors and joysticks or
keyboards to actuate the robot. These 2D interfaces are cum-
bersome and workload-intensive (i.e., they require significant
mental effort) [3], [4]. Utilizing VR in robotic systems, high-
fidelity graphic renderings and native changes in viewpoint
can assist in planning robot motions and overcoming the
limitations of 2D visual interfaces. In addition, it involves the
direct mapping of VR hand controllers to robot manipulators
via an interface [9], with having 3D spatial information can
assist in immersive controlling robot. Such VR teleoperation
system also can employ exoskeletons for the operator to
teleoperate bimanual robotic avatar [10], [11], [12] or apply
motion capturing systems to teleoperate a aerial manipula-
tor [13] and a hyper-redundant robot [14]. Researchers have
proposed mobile-robot teleoperations aimed at validating the
functionality of immersive VR environments [15], [16], [17],
[18], [19], [20]. In most previous studies, human following
and motion planning are implemented separately, with the
primary focus on the effects of latency on the synchroniza-
tion and positioning of targets in the real world and those
represented in the VR system. When performing tasks that
involve dexterity, robots generally perform multiple pick-up-
and-place tasks [21], [22], which means the user is not kept
interacting with the actual object.

In dealing with the distance between the gripper and
object, some researchers have employed a wrist camera by
which to read a range sensor and project a stereoscopic view
of the arm [9]. Images from the camera can also be linked
to a hand controller to enable constant monitoring during
manipulation [3]. Despite limited success in the performance
of VR tasks, it should be noted that the streaming of camera
images via VR remains a special application of 2D inter-
faces. An approach to build virtual counterparts is rendering
colored 3D point cloud from a remote depth camera mounted
on the wrist [18], [21], [23], [24], [25], [26]. As transferring
large amounts of point-cloud data may lead to a burden over
network, some researchers proposed an automated object
detection and streamlined data transfer method. The system
executes an object detection and segmentation algorithm. The
raw point cloud data is then replaced by virtual objects to re-
duce the amount of transferred data [21], [22]. However, the
target object is often occluded by the robot arm, resulting in
incomplete point-cloud data and failure in reconstructing the
actual object. Also, it is possible to build virtual counterparts
by fiducial system for the localization and tracking of objects
relative to the robot itself [3]. Nonetheless, affixing tags to
objects is difficult in many service robot applications. In the
current study, we employed DOPE [27], which applied deep
neural networks for 3D object detection and pose estimation
in our VR interface. Using DOPE, our approach only needs
an RGB image to do the pose estimation.



Fig. 2. System architecture of VR-based teleoperation system, which can be operated over the internet from anywhere in the world. In addition to the
two real-time image feeds, virtual representations reflect the means by which users naturally interact with a target. Translucent virtual representations are
used to indicate the predicted state of the robot after it receives a command.

III. PLATFORM DESCRIPTION

Figure 2 presents an overview of the proposed approach
in which the user and actual robot are separated by an
arbitrary distance. We employed Photon Unity Network 2
(PUN2) [28], which is a real-time cloud framework used
to host online multiplayer games for Unity developers, for
communication tasks over the internet and an Oculus Quest
2 VR headset to visualize the virtual environment while
manipulating the robot arm. Within the virtual environment,
actual objects are replicated via 3D reconstruction or CAD
modeling. In the following experiment, we also leverage
YCB object and model set [29], which is a benchmark in
robotic manipulation research. The actual robot arm and
gripper are controlled by guiding an identical virtual robot
arm, which is modeled by the open-source LoCoBot’s URDF
model by Meta Research [30] (i.e., a robot arm model with
the same joint configuration and dimensions as the actual
robot arm).

ROS# [31], an open-source software library for Unity to
communicate with ROS via .NET applications, and Ros-
bridge [32], an open-source software library providing a
JSON API to access ROS functions for non-ROS programs,
are used to build a WebSocket, which allows two-way
communication between ROS and Unity data transfer. The
remote environment data, including the estimated actual ob-
ject pose, LoCoBot state and the streaming image (optional),
is sent to Unity. Virtual objects are synchronized with actual
objects by continuously performing pose estimation using
Deep Object Pose Estimation (DOPE) [27] to process RGB
images captured using a camera attached to the base of
the actual robot, shown in Fig. 3. On the other hand, the
control command from the VR user, including the desired
joint state and gripper state for the actual robot arm, is sent
to the computing unit in remote site. The proposed system
enables users to observe virtual scenes that are synchronized
with corresponding actual objects in the physical workplace,
and to remotely control the robot arm. Even with the least

information capable to transmit (robot state, object poses),
the manipulation task can be achieved. It also gains the
advantage of minimizing latency to make manipulation more
intuitive. It will be discussed in section IV. The current study
on VR interface is investigated from the first-person point of
view (FPS) of the VR User.

A. Hardware

The proposed teleoperation platform was implemented
using a consumer-grade VR device (Oculus Quest 2; $420)
and a low-cost robot (LoCoBot; $5,000). The Oculus Quest
2 system provides a head-mounted display comprising a
singular fast switching LCD panel with a resolution of 1832
× 1920 per eye and a refresh rate of 120 Hz. It is also
equipped with two Oculus Touch hand controllers with 6
DoF pose tracking using infrared LEDs, thereby allowing
comprehensive tracking in a 3D space by the Oculus Quest
2 constellation system. Fig. 3 presents the LoCoBot robot
used in this study with a control system comprising the
following components: an Intel RealSense RGB-D Camera
D435, a Jetson Xavier NX, a WidowX 200 Mobile Arm (5
DOF), an Intel NUC, and a Kobuki Base. In addition to the
original camera at the top of the robot, we attached an Intel
RealSense RGB-D Camera D435 near the base of the arm
to capture RGB images for object pose estimation. Note that
we opted not to use the original camera due to the likelihood
of robot arm occlusions, which could cause pose estimation
failures. The teleoperation system was developed in Unity, a
3D game engine that supports major VR headsets, including
the Oculus Quest 2.

B. Pose Estimation

DOPE [27] is used to estimate object poses on the robot
side in order to update the poses of virtual objects on the
operator side. As shown in Fig. 3, the top camera was used
for real-time image streaming, whereas the lateral camera
was used to capture images with which to estimate objects’
poses. The robot was also equipped with Xavier NX which



Fig. 3. The proposed robot setup.

for performing DOPE calculations. We employed the popular
YCB [29] object model as a reference to facilitate the
rendering of objects (e.g., a Domino sugar box). In case of
failure pose-estimation by DOPE, a physical engine in Unity
simulates the dynamics of the virtual objects with the aim of
preserving interactions until the pose is updated using data
from the actual object. The representation of virtual objects
changed from opaque to transparent.

C. Robot Arm Control in Virtual Reality

1) Visual Interface: Effective control over the robot in
virtual reality requires the user to have a clear spatial
understanding of the environment to be manipulated on
the remote side. In our system, five visual elements are
present in the virtual scene. (a)Apaque virtual robot is for
synchronization with the actual robot while (b)transparent
virtual robot is for synchronization with the user’s move-
ment, which are mapped by the Oculus Quest right controller.
Thereby, allowing the user to move their arm freely, while
guiding the movement of the virtual robot arm with the
action visualized in real time. Beside, (c)apaque virtual
objects are synchronized by DOPE [27]. Nonetheless, self-
occlusion often occurs when the robot arm is picking up an
object, in which case DOPE may fail to estimate the object’s
pose. To mitigate this problem, the object in this situation is
rendered from apaque to (d)transparent virtual objects, to
let the user know that the object’s pose is uncertain. Further
guidance is (e)designated screen in the virtual working
environment, which streaming RGB video signal from the
cameras in the remote environment. This is intended to
clarify the positions of objects and events at the work site to
the user.

2) Control Interface: To minimize communication latency
and avoid severe computational expense on the remote side,
we replaced the PyRobot inverse kinematic solver with
Unity’s kinematic chain and IK solver. The goal-point is set
on the end effector of the virtual robot, which is mapped onto
the right controller. Once the goal-point and constraints have
been set, the FABRIK algorithm [33] is used to compute
the state of each joint of the virtual robot. The user then
confirms the desired trajectory by pressing the grip button
on the right controller, whereupon the host’s Unity program

publishes the joint state of the virtual robot to the Rosbridge
server [32] via ROS# [31]. This triggers a handler script to
read it and uses PyRobot API [34] at the NUC to set the
joints of the actual robot arm. By circumventing PyRobot
IK, this approach avoids one step behind the awareness of
the action, thereby making it possible to control the actual
robot in real time when a movement is performed by the
user.

D. Network Control

PUN2 [28] allow the VR user (client) control the robot
(host) from any location that has access to the internet.
We leverage the Remote Procedure Calls Protocol (RPC) of
PUN2 to send and receive data remotely and synchronize
the virtual scene with minimum latency. The VR user sends
their controller inputs and desired joint state via RPC, for
use in adjusting the robot’s position. Accordingly, the video
streams and estimated poses of actual object are sent from
the host to the VR side for synchronizing the virtual working
space with the actual remote environment. We found that
there is no significant delay (i.e., no longer than 1 second)
from the synchronization of the actual robot state to VR and
the control command from the client to the host. However,
video streaming and virtual counterparts suffer from frame
rate reduction, from 14 fps and 1.4 fps accordingly dropping
to 0.75 fps; this is largely due to the bandwidth limit imposed
by PUN and internet connection speed. We investigated the
user experience of teleoperating a robot arm to set a dining
table. The two ends of the experiment were set in two
universities located halfway around the world. Specifically,
the VR side was set up at George Mason University in
Virginia, US, and the actual robot was set up at National
Yang Ming Chiao Tung University in Taiwan.

IV. HUMAN-ROBOT-INTERACTION EXPERIMENTS

The effectiveness of the proposed system in remote tele-
operation tasks was evaluated by conducting a user study
involving three experiments. All of the participants (ages
20-40) lacked any prior experience with our platform. Ex-
periment 1 focused on the visualization methods used in
the proposed system, including video (in the form of a 2D
monitor interface) and the virtual counterpart (rendered via
pose estimation). Experiment 2 focused on evaluating how
well our proposed system allows even novices to perform
tasks of high dexterity. In accordance with the Robotic
Grasping and Manipulation Competition at IROS 2021 [35],
we employed 5 tasks involving setting a table. The final
experiment focused on mapping the skills developed in one
task to another task. The setups of the experiments are shown
in Fig. 4. In addition, the results of a 7-point Likert scale
were used for subjective analysis while the completion time
and score were used as an objective index of difficulty.

A. Experiment 1: Methods of Visualization

The first manipulation task involved pushing one object
and then stacking another object on it. Both of the objects
used in this experiment were selected from the YCB object



Fig. 4. We evaluated our system based on dining table setting tasks, including: (1) pushing and stacking of boxes; (2) picking up and stacking plates and
bowls ; (3) picking up and placing multiple implements such as cutlery; (4) rearranging glasses and cups ; (5) smoothly scooping sugar grains from a set
distance; (6) smoothly pouring water from a set distance. The proposed system allows even novices to perform tasks of high dexterity through the remote
manipulation of a robot arm via the internet from anywhere in the world.

set [29]. The objects were visualized in VR using (a) one
real-time image, (b) two real-time images from different
perspectives, or (c) virtual counterparts rendered via pose
estimation.

A local network was set up via a wired Ethernet cable
connection between the computing unit of the LoCoBot and
the desktop, which for running Unity program, in the remote
environment, while the Oculus Quest 2 was connected via
a USB cable to the desktop in the operator site. We first
conducted a test under two different network modes: 1) Local
mode (without PUN2) and 2) Global mode (with PUN2)
by changing the gripper state and going through a list of
designated goal points to estimate latency. The method here
was for all computing units to do the time synchronization
with the public time sever at the beginning. Then, when the
button was triggered by the user, the current UTC date-time
was recorded and a ”trigger message” was passed though the
internet to the remote side. Once the message was received,
a ”feedback message” was sent back to the operator side
immediately, the time different between ”trigger time” and
”feedback time” on the operator site was considered as the
communication time. We assume that it is the same as the
update time of virtual robot arm from the actual robot arm.
Based on the recorded video, we collected the update time
from video streaming when the desired state of the virtual
robot arm was updated. 10 transferring samples were col-
lected for analysis. For Local mode, the test was performed
by a VR user in the same building as the actual robot. The
update time was approximately 0.1s after the communication
time (∼0.03s). By contrast, for Global mode, the test was
performed by a VR user in the US while the robot remained
in Taiwan. The update time was approximately 0.2s after
the communication time (∼0.35s). This indicated that less
than 0.2s for Local mode and 0.6s for Global mode will
work properly with our system. In addition to the latency
discussed here, we will also discuss how decreased frame
rate will affect the participants’ performance.

To compare the various approaches to visualization, we
recruited 12 participants who were novices in the use of
VR systems (i.e., with 5 or fewer hours of experience). We

(1) Top camera (2) Lateral camera (3) Virtual counterpart

Fig. 5. Initial views of different visualization methods in experiment
1. Method(a), one-image stream(1), includes only the image top camera.
Both objects were nearly occluded by the robot arm. Method(b), two-image
stream(1+2), includes images from both the top camera and the lateral
camera, providing the user with a more comprehensive view of the work
space. Method(c), virtual counterparts(only 3), generates the whole object
model in VR.

Method(a) - (1) Method(b) - (1+2) Method(c) - (only 3)

Fig. 6. The performance of trajectory in experiment 1 by an expert.
(i.e., a reference point (gripper link relative to the base link of the LoCoBot)
from the initial position until the first contact against the yellow box via all
visualization methods. (unit: cm) The strategy for Method(a) overcoming the
occlusion by moving the robot arms several times manifests in the jagged
line. The trajectory for Method (b) became smoother because of with 2
different perspectives. Method(c) allowed the expert user to complete the
task directly and quickly.

decreased the frame rate (originally 14 fps from the camera
feed and 1.4 fps for the virtual counterparts) to 1 fps (for all
methods) in order to simulate the frame loss would expect
to encounter when using a poor network connection. Half
of the participants manipulated the robot using the video
stream first (a and b) and then using virtual counterparts (c).
The other half of the participants performed this sequence of
operations in the opposite order. Fig. 7 displays the average
completion time, which was used to quantify the efficiency
of the methods. In terms of completion time, the use of
virtual counterparts proved most helpful. It minimized the
degree of variance in the outcomes as well as the number
of task failures, regardless of the frame rate, such that most



Fig. 7. Completion times obtained via various visualization methods
using normal frame rate and decreased frame rate by novice in
experiment 1.

of the participants were able to complete the task in their
first try. Note that under a lower frame rate, the average
time top completion was slightly longer (>5s) than under
a normal frame rate. Even though the distance of the field
was provided positional information like binocular vision
in Method(b), the participants preferred to use the virtual
counterpart, regardless of latency. When using Method(b)
with a lower frame rate, the participants expressed that they
felt uncoordinated. Taken together, these results reveal that
a virtual model based on pose estimation facilitates robot
manipulation, even when operated on a poor network. Some
failure cases occur when the end-effector is approaching the
box. Although it is assumed that the gripper is able to pick up
the box with at least 38mm at a fully-opened state( 50mm),
the box was sometimes hit down by inappropriate approach-
ing. The failure was mainly due to the error of pose-
estimation by DOPE [27] or hand-eye camera calibration
at the beginning. Fig. 5 shows the initial views of different
visulization methods and Fig. 6 shows the performance of
trajectory was drawn by an expert (>20 hours operating
VR systems). As for the virtual counterpart from the lateral
camera, it allowed the expert user to complete the task
smoothly and quickly. This can be attributed to the fact that
DOPE[27] was able to estimate the pose of actual object
even partially occluded. Hence, the expert user was able to
benefit for interactions with the object. Based on the above
results, Method (c), virtual counterpart, was user-friendly and
promising for both novices and expert users.

B. Experiment 2: VR vs. Keyboard Controls and Task Per-
formance Benchmark by User Groups

The experiment tasks are inspired by the multi-year IROS
Robotic Grasping and Manipulation Competition - Service
Robot Track [35]. The objects we used in the experiments are
also inspired by the YCB objects [29] and common objects
on a dining table. Due to the hardware payload and gripper

TABLE I
WE RECRUITED A TOTAL NUMBER OF 28 PARTICIPANTS TO CONDUCT

THE 5 TASKS. THE BENCHMARK RESULTS OF AVERAGE SCORE AND

TIME SPENT IN EACH TASK IN EXPERIMENT 2 ARE SHOWN.

KM-Expert VR-Novice-B VR-Novice-A VR-Expert
N of Participants 1 10 18 1
Completion Time
(unit: s)
1: plates/bowl 197.3 139.6 133 102.8
2: tablewares 143.5 135.5 135.7 92.7
3: glasses/cups 260.8 169.3 161.4 110.8
4: sugar 86.3 156.1 58* 50.5
5: liquid 57.8 69.4 44.4 47
Score
(unit: pts)
1: (120) plates/bowl 112 100 108.89 110
2: (300) tablewares 276 271 255.56 282
3: (70) glasses/cups 66 66 67.5 70
4: (50) sugar 25 37.5 44.44* 50
5: (50) liquid 25 30 41.67 50

* The participants in this group only had one chance to transport sugar grains,
whereas the other groups could attempt the task repeatedly until they wished to stop.

limitations, we chose to scale down the objects by modeling
CAD models followed by 3D printing. Such modifications
also considered easy replication of our work using LoCoBot
hardware. All CAD models will be publicly available. There
were other tasks designed in the competition, but we found
them infeasible for the LoCoBot setup, such as the ice cubes
task (which requires touch sensing) and the sugar packet task
(which requires dual arms). Figure 4 depicts the five tasks
(2-6). We chose a range of tasks and modified them to fit
with our robot setup.

We recruited 28 novices to use our VR teleoperation
system for the 5 tasks feasible for our hardware setup. All
participants were first-time users. After some instruction,
the participants wore the VR head mount and used the
hand controller to interact with the objects. They were not
instructed to grasp the objects in a specific way, and therefore
all possible motion primitives, such as pushing, grasping, and
placing, were allowed. In Tasks 2 to 5, there was a 5-minute
time limit for each task, but there was no limit in terms of
number of attempts made within that time constraint. In Task
6, users were only allowed one attempt to transport the fully-
filled water cup. We also reported a baseline using keyboard
and monitor (KM) inputs by a researcher experienced with
our VR teleoperation system, to perform 5 trials of each
task. The KM teleoperation method is provided by Pyrobot
API [34]. The position of the end-effector is controlled by
’w,s,a,d,z,x’ keys and directly adjusting two last joints of
the robot arm to achieve like ’roll-pitch’ function of the end-
efftector by ’h,j,k,l’ keys and one keystroke corresponds to
10 mm or ∼6 deg. We evaluated performance by counting
the scores following the rules in the 2021 competition [35].

Group A (18 novices) were given some tips and allowed to
watch previous participants before starting each task. Each
participant in group A performed 2-3 trials with different
tasks. Group B (10 novices) was a control group that did
not receive any instruction. Each participant in group B
performed 1 trial for each task. In total, 50 trials and 44
trials evenly distributed for each task were collected. Table I
shows the average scores and completion time of using a VR
video stream and controller (VR-VS) versus keyboard and



TABLE II
THE COMPETITION TIME, SCORE AND P-VALUE BETWEEN GROUPA AND

GROUP B IN EACH EXAM FOR EXPERIMENT 3.

Competition time (s) Score
p-val mean(A) mean(B) p-val mean(A) mean(B)

E1 0.358 96.7 109.2 0.009 41.7 8.3
E2 0.474 72.5 73.5 0.383 37.5 33.3
E3 0.010 31.3 72.3 0.500 45.5 45.8
E4 0.001 24.0 57.2 0.500 41.7 41.7
*p-val: p-value
mean(A): the mean value among GroupA
mean(B): the mean value among GroupB

monitor (KM). Overall, both VR-VS and KM methods were
able to complete all tasks. However, the execution time for
VR-VS was shorter than that by KM. We observed that the
VR interface allows different motion primitives like pushing
or fine-tuned adjustment of the positions or orientations of
the knife and fork. This affords the user multiple strategies to
fine-tune incorrect motions, such as a poorly aligned pick-
up-and-place maneuver. VR showed superior performance
in Task 5 and Task 6 than KM by better fluency in 6
DoF grasping. During transport, the sugar grains or water
tended to drop or splash out when controlled by KM due
to a sequence of noncontinuous strokes. Using VR led to
smoother and more intuitive control than KM. VR was also
useful in Task 5; as the spoon reached into the sugar grain
container, the scooping required dexterous manipulation to
successfully retrieve the desired amount of sugar grains. Such
skills were difficult to perform using the KM method. Note
that the sequence of actions to perform the Task 6 appears
simple, but is in fact far more difficult than the other tasks for
the novices. For example, if the cup is not tilted smoothly
across the critical point to pour out the water, then most
of the water falls diagonally (hanging onto the cup’s outer
wall) rather than falling vertically. However, our results do
not provide evidence that an opening expert demonstration
improved participants’ performance on 5 tasks. From the
background investigation, the participants in group B were
all inexperienced with VR but experienced with robotics,
whereas the participants in group A, 15 having VR ex-
perience and 4 having robotics experience. We discovered
that the participants with VR experience, who are familiar
with hand controllers, perform dexterous manipulation more
proficiently than Group B. Nevertheless, we find that our
proposed system allows even novices to perform tasks of
high dexterity. We further explore how the novice to become
expert in the next experiment.

C. Experiment 3: Practice Makes Perfect

We conjecture that practice will make perfect, but how
long does it take, and what kinds of practice could best allow
a novice to master teleoperation? An experiment involving
both practice and exams was set up to investigate. Task 6,
pouring water on a plate, was selected for this experiment
because previous experiments observed that tasks of this
type require dexterous skills for teleportation. We grouped
12 novices into GroupA(with practice) and GroupB(without
practice). This task, taken as the exam, was executed 4 times

(a) Completion time

(b) Score
Fig. 8. The completion times and the scores of Group A (with practice)
and Group B (without practice) in each exam for experiment 3.

for each participant. The main difference was that GroupA
did the practice before every exam. Two practice actions
would be applied, (1) operate the gripper to approach a
yellow box (the same box as in Task 1) 3 times, but not
pick it up, for 3 minutes, and (2) draw the trajectory in
the air with the box in hand for 1 minute. On the other
hand. Group B simply rested for 4 minutes. It should be
mentioned that the motion primitives during the practice
were different from the exam. The results are displayed in
Fig. 8 and Table. II. The performances of all participants had
significantly improved. They completed the task in a shorter
time and got higher scores. On the 1st exam, the p-value of
score (<0.05) indicated that there is statistically significant
difference between two groups and we deduced that GroupA
has significantly better manipulating skills than GroupB due
to practices. On the 4th exam, all participants in GroupA
completed the task in less than 45s, the performance is very
similar to the expert user (44s). Almost all participants in
GroupA highly agreed that they felt more confident in the
exam after doing several practices (average: 6.5/7), and found
that practice was helpful for mapping the skills from practice
to the exams (average: 6.5/7). As for GroupB, although
the average scores in the last 2 exams were similar to
GroupA, the average completion times were much higher
(>30s). The reason here could be that GroupA has practiced
and felt more confident for the exams; hence, they tended
to spend less time just to get a good-enough score. In
summary, it took a predictable time to make a novice have
an expected performance. Furthermore, performing similar
motion primitives was helpful for dexterous manipulation.

V. CONCLUSION

Our paper presents a novel approach to the VR teleop-
eration of a robot arm. Our toolkit will be released for
free to facilitate adoption and future extension. Current



limitations and possible extensions include the following: a)
pose estimation failures due to self-occlusion, which could be
addressed through the use of additional cameras; b) limited
flexibility due to the use of only one robot arm with a gripper
hand, which could be addressed by using an additional arm
and a five-finger hand for performing more sophisticated
manipulations; and c) failure to consider deformable objects
(e.g., clothes), which may be addressed by estimating the 3D
geometry of objects in real time.
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