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a b s t r a c t 

Various applications of human-computer interaction are based on the estimation of head pose, which 

is challenging due to different facial appearance, inhomogeneous illumination, partial occlusion, etc. In 

this paper, we propose a deep neural network following the Coarse-to-Fine strategy to estimate head 

poses. The scheme includes two branches: Coarse classification phase classifying the input image into four 

categories, and Fine Regression phase estimating the accurate pose parameters. The two sub-networks 

are trained jointly. To tackle the problem of insufficient annotated data in training process, we design a 

rendering pipeline to synthesize realistic head images and generate an annotated dataset with a collection 

of 310 k head poses. The results on benchmark datasets and synthetic dataset validate the effectiveness 

of our approach, as well as the results on images with diverse illumination, occlusion, and motion blur. 

Moreover, our method can be easily extended to estimate head poses on depth images. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Head pose estimation has been applied to broad applications

in human-computer interactions, e.g. gaze detection, driving assis-

tance, disabled assistance, and entertainment. Head pose is also

used to understand human attention, behavior or intention, which

has been studied and examined extensively in cognitive psychology

and neurophysiology community [1] . 

Over the past several years, head pose estimation remains an

attractive research topic, since it is still challenging due to the di-

versity of the head appearance caused by the head motion and var-

ious head pose changes, such as facial texture, inhomogeneous il-

lumination, partially occlusion, etc. A number of algorithms have

been proposed to address the head pose estimation problem, and

a good survey can be referred to [2] . 

In general, the existing approaches can be divided into two

streams: classification and regression . Classification approaches aim

to classify the head pose into a discrete space, that is, estimat-

ing the head pose by assigning a discrete pose category label to

each input. These approaches are relatively robust to large head

pose variation but with sparse solution space, e.g. 15 ◦ intervals for

each category. On the other hand, regression approaches usually

estimate head pose by fitting a regression model on training data
∗ Corresponding author. 
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o output continuous angles. The results of these regression ap-

roaches can reflect small changes of head pose. However, employ-

ng individual regression model for accurate continuous head pose

stimation increases model complexity . 

To address the challenge, we approach our method in a coarse-

o-fine manner, which leverages the robustness of the classifica-

ion method and the sensitivity of the regression method to small

hanges of head pose. In particular, we first determine the specific

ategory of the input image, thus narrowing down the solution

pace. Then a regression network is selected on the basis of the

utput category to estimate accurate pose parameters. The coarse-

o-fine cascade enables our approach to increase the robustness

f head pose estimation without increasing the model complexity

nd the difficulty in training process of the traditional regression

etworks. The two sub-networks are achieved via a deep learning

odel and share the same full-image convolutional feature map

nd perform joint learning, thus achieving computation efficiently. 

Although, CNN techniques have shown good performance on a

umber of tasks, a major challenge on their application for head

ose estimation is obtaining sufficient annotated head pose data,

specially the data with variations of head appearance ( e.g. ex-

ression, race, age, and gender), and environmental factors ( e.g.

cclusion, noise, and illumination). Previously released head pose

atasets, such as Biwi Kinect Head Pose Dataset [3] and Pointing’04

ataset [4] , consist of around 15 k and 3 k images, respectively.

he limited amount of annotated head images in these datasets

akes it hard to apply CNN techniques. We devise an approach for

https://doi.org/10.1016/j.patcog.2019.05.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.05.026&domain=pdf
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ynthesizing realistic head pose images with annotations to over-

ome the obstacle of insufficient annotated data in head pose esti-

ation. 

Our main contributions are summarized below: 

(1) A new deep learning framework following the coarse-to-fine

strategy for estimating head pose. We model the estimation

with a cascade Coarse-to-Fine process, where the accurate

pose parameter estimation is followed by rough pose clas-

sification. Both tasks are achieved via deep learning models,

which share the same full-image convolutional feature map

and perform joint learning. The proposed method spread the

network complexity and training burden of traditional re-

gression networks. 

(2) Synthetic head pose image generation. A synthetic head pose

image rendering pipeline is introduced in our approach for

breaking the limitation of head pose image quantity, increas-

ing the diversity of the head pose images with high resolu-

tion ( e.g. , different illumination conditions, motion blur, and

occlusion), and helping to improve the performance of es-

timation results. In addition, we conducted an experiment

to verify the compatibility between synthetic data and real

data. We generate a dataset with a collection of 310 k head

pose images. 

(3) Easily expandability and promising head pose estimation re-

sults. The trained head pose estimation network yields very

promising results on both synthetic dataset and real dataset.

Moreover, the proposed deep learning framework and image

rendering pipeline can be easily extended to handle the task

of depth head pose image estimation. 

. Related work 

Head pose estimation is an important topic in human-computer

nteraction, computer vision, and virtual reality that has attracted

uch research attention. Since the head pose data determines

he human visual field, it can be efficient and intuitive applied

o control 3D avatars, devices, or products. Head pose can also

erve as an important pre-processing step for further analysis

f gaze estimation [5,6] , human-object interaction understanding

7–9] , and human-robot interactions [10] . We review some repre-

entative work closely relevant to our problem. 

.1. Head pose estimation 

Spurred by the growing demand for human-computer interac-

ion, this field made large progress in the last years. There are

wo basic approaches currently being adopted for head pose es-

imation: classification-based approaches and regression-based ap-

roaches. The survey of [2] well-summarized head pose estimation

echniques. 

The classification methods learned a mapping between images

nd a discretized space of poses. Given a new image, the classi-

ers assign it to a discrete class [11] . Since the majority of such

ethods have discretized outputs, only allowing coarse head pose

stimation, it is difficult to derive a reliable continuous estimation

rom the results. 

Different from classification methods, regression methods esti-

ate head pose by learning a functional mapping from the image

pace to one or more pose directions [12,13] . The allure of these

pproaches is that with a set of labeled training data, a model

an be built to provide a precise pose estimation for any new data

amples. Due to the breakthrough results achieved by deep learn-

ng technologies in many research field, Zavan et al. [14] proposed

n automatic pipeline based on convolutional neural networks for

etecting different facial regions, processing them, and combining
he results generated from each, resulting in a robust head pose

stimation and gender recognition. And some recent work can es-

imate head pose with high accuracy and perform in real time

15,16] . 

With the development of sensing technologies, such as Time-

f-Flight sensors and the Microsoft Kinect, excellent capability and

exibility in capturing RGB-D images are provided. New methods

nvolving both RGB and depth images are emerging. Hong et al.

17] formulated and solved head pose estimation as a multi-task

earning problem, which was based on combining different types

f features (i.e., features extracted from RGB images and depth im-

ge, respectively) with manifold learning method and multi-modal

elationship mapping, thus improving the estimation performance.

uch multi-modal learning formulation can also be used to solve

lic prediction for web image reranking [18] , and the manifold

earning methods can be applied to human pose recovery [19,20] ,

D object recognition [21] , and scene recognition [22] . 

In comparison with these previous estimation methods, this pa-

er focuses on combining classification and regression methods to

ddress the head pose estimation task. More concretely, we use

lassification network to narrow down the solution space and use

egression network with low computational complexity to estimate

ccurate parameters. We also prove that our method can be easily

xtended to solve the depth head pose estimation. 

.2. Coarse-to-Fine strategy 

Lately, the Coarse-to-Fine strategy is proposed to improve the ef-

ectiveness and performance of many tasks, i.e., aiming to estimate

he parameters roughly in the coarse stage and obtains precise pa-

ameters in the fine stage. 

For image classification, Zhang et al. [23] learned a Visual-

emantic Tree to organize image categories hierarchically in a

oarse-to-fine manner. In face detection tasks, some researchers

roposed to combines classifiers in a cascade structure [24] , which

llowed background regions of the image to be quickly discarded

hile more computation was spent on promising face-like re-

ions. Pavlakos et al. [25] employed a step-wise approach to pre-

ict human pose, which consists of a convolutional network for 2D

oint localization and a subsequent optimization step to recover 3D

ose. 

To estimate head pose, Wu et al. [26] proposed a two-stage

cheme based on the rationale that visual cues of head pose

ad unique multi-resolution spatial frequency characterization and

tructural signature. In the first stage, they projected the head

mage to a Gabor wavelet transform subspace and determined

hether the true pose located in the subset. In the second stage,

hey used a structural landmark analysis in the transformer do-

ain to refine the estimation. 

Inspired by previous works, we propose a cascade CNNs in a

oarse-to-Fine framework to estimate head pose. In particular, we

se the classification method in the coarse phase to narrow down

he solution space and output a rough range in which the true

ose is located. In the fine phase, we use the regression method

o estimate the true pose from the small range of head pose con-

trained by the first phase output. Therefore, our proposed method

pread the network complexity and training burden of the tradi-

ional regression networks. 

.3. Synthetic dataset 

In the past decades, researchers have made impressive progress

n 3D object modeling and synthesis. Synthesized data has been

pplied for deep network training in many computer graphics and

ision tasks, e.g. , autonomous driving [27] , license plate recognition
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Fig. 1. Architecture of our deep estimation model. It consists of two phases: Coarse Classification phase and Fine Regression phase, which share several convolutional layers 

at the bottom. The two networks share several blocks borrowed from the first 21 convolutional blocks of GoogLeNet [34] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Head pose category definition. The angle range of roll 

( θ r ) is fixed as [ −20 ◦, 20 ◦] throughout all categories. 

Label Range of pitch ( θ p ) Range of yaw ( θ y ) 

L 1 [0, 75 ◦] [0, 50 ◦] 

L 2 [ −75 ◦, 0) [0, 50 ◦] 

L 3 [ −75 ◦, 0) [ −50 ◦, 0) 

L 4 [0, 75 ◦] [ −50 ◦, 0) 
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[28] , 3D reconstruction [29] , scene understanding [30] , human de-

tection and pose estimation [31] , and medical image segmentation

[32] and detection [33] , which have proved that synthetic data can

help to achieve good performance. 

In the follow-up phase of the study, we find that the head

pose datasets ( e.g ,. Biwi Kinect Head Pose Dataset [3] and Point-

ing’04 Dataset [4] ) are not sufficient for training a deep network

due to the limited variation, the number of available samples, and

partially incomplete annotation. Therefore, we devise a rendering

pipeline to synthesize head poses with precise angles consider-

ing different gender, race, and age. During the generating process,

we consider both head structure and face texture, which needs a

more complex and detailed geometric structure than the genera-

tive models used in the previous works. 

3. Approach 

In this paper, a head pose is parameterised as three angles

of head orientation � = (θp , θy , θr ) , θp ∈ [ −75 ◦, 75 ◦] , θy ∈ [ −50 ◦,
50 ◦] , θr ∈ [ −20 ◦, 20 ◦] [35] . θp , θ y and θ r represent the pitch, yaw,

and roll, respectively. 

We model head pose estimation in a coarse-to-fine framework,

which first classifies the input image into one of the four categories

of head poses, and then a regression network is applied to estimate

the final parameters of head pose. The estimation algorithm is de-

composed into two cascaded deep learning stages, namely, Coarse

Classification phase and Fine Regression phase. As demonstrated in

Fig. 1 , these networks share several convolutional blocks in the

bottom and perform joint learning for head pose estimation, which

will be detailed in the following sections. 

3.1. Coarse classification 

In this section, we introduce our model for roughly estimating

head pose (the Coarse Phase in Fig. 1 ). The bottom of the classifica-

tion network is a stack of convolutional layers, which are borrowed

from the first 21 convolutional blocks of GoogLeNet [34] . We de-

fine four categories to narrow down estimation range. Thus this

network takes a head image as input and outputs a specific clas-

sification result. After that, the final estimation result is obtained

within the certain category based on a regression network. 

Category. According to the sign of three angles of orientation,

we classify head poses into four categories. As shown in Table 1 ,

the labels are defined as L = { L 1 , L 2 , L 3 , L 4 } . The reason that we ig-

nore the roll angle is that the change of head appearance along the

roll axis is not obvious. Thus splitting the space of roll angle will

increase classification error, which will be propagated to the re-
ression phase and will result in performance degradation. There-

ore, we just take pitch and yaw angles into account. We conduct

valuations of our classification strategy in the section of the ex-

eriment. 

Loss function. We build a fully-connected layer and design a new

inear Softmax classifier for the sub-spaces classification. The new

oftmax classifier is trained on data with category annotations. 

The goal of training a CNN is to maximize the probability of the

orrect class, which is achieved by minimizing the softmax loss.

et C = { (x i , y i ) | i ∈ [1 , N] } be the training set. Each image x i is as-

ociated with a label y i ∈ [1, K ], where K = 4 . The softmax function

s a normalized exponential and is defined as: 

 j = σ j (z) = 

e z j 
∑ K 

k =1 e 
z k 

for j = 1 , . . . , K (1)

here z is the vector that is cast to the softmax layer. The denom-

nator 
∑ K 

k =1 e 
z k acts as a regularizer to make sure that 

∑ K 
k =1 y k = 1 .

s the output layer of a neural network, the softmax function can

e represented graphically as a layer with K neurons. 

.2. Fine regression 

With the obtained category by the classification network, a re-

ression network is applied to estimate the final head pose param-

ters. We achieve this via a regression network, which takes the

024-D feature vectors extracted by the share convolutional layers

s input, and outputs the head pose parameters, i.e., pitch, yaw,

nd roll (the Fine Phase in Fig. 1 ). The bottom of the regression

etwork is the first 21 convolutional blocks of GoogLeNet. We train

our regression networks simultaneously, that is, each sub-space in

oarse Classification has a corresponding regression network. 

Regression Architecture. The bottom of the regression network

s the first 21 convolutional blocks of GoogLeNet. On the top of

he last convolutional layer, we adopt a three-layer regression net-

ork to estimate the final outputs. This regression network con-

ains 3 convolutional layers with a kernel of 5 × 5 pixels, and 3

ax-pooling layers with a kernel of 2 × 2 pixels. The stride of

onvolutional layers is set to be 1 and 2 in the pooling layers.
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fter each convolution layer, we use ReLU to accelerate conver-

ence. Subsequent to the convolutional layers, there are 2 fully-

onnected layers with 300 hidden units. Moreover, we initialize all

eights in each convolutional layer by a zero-mean Gaussian dis-

ribution with a standard deviation of 0.01 and use XavierFilter to

nitialize the weights in fully-connected layers. To alleviate overfit-

ing and enhance the robustness of the CNN model, we employ

dropout” method and set different probabilities in each hidden

ayers. In the output layer, there is a linear activation function to

redict the parameters of head poses �. We train the regression

etwork using stochastic gradient descent. 

Loss function. We use Euclidean loss (the sum of the individ-

al losses) to measure the distance between ground truth and the

redicted value. To avoid the risk of scale unbalance in the net-

ork, we add sigmoid operation before the Euclidean loss. Oth-

rwise, the network optimization will crash due to a gradient

verflow problem. Let R = { (x i , �i ) | i ∈ [1 , N] } be the set of train-

ng data, where x i denotes an RGB image and �i represents the

orresponding ground truth ( � = (θp , θy , θr ) , θp ∈ [ −75 ◦, 75 ◦] , θy ∈
 −50 ◦, 50 ◦] , θr ∈ [ −20 ◦, 20 ◦]). We define the following loss func-

ion and cast the problem of training as a minimization problem: 

 

∗ = arg min 

w 

L (w ) 

= arg min 

w 

1 

N 

f (x i ; w ) + λr(w ) , (2) 

here λ is the parameter of weight decay, and r ( w ) is the regu-

arization term (L2-norm) that penalizes large weights to improve

eneralization. This is achieved by minimizing the loss term be-

ween the prediction angles and the corresponding ground truth.

 ( x i ; w ) is a term of the loss defined as: 

f (x i ; w ) = 

1 

2 

|| ψ(x i ; w ) − �i || 2 2 , (3)

here term ψ( x i ; w ) is the predicted value of x i with the network

eight w . Note that λ determines the trade-off between Euclidean

oss and large weights. 

.3. Synthetic head pose generation 

In this section, we discuss how to obtain a large number of

ead pose images with precise annotations by rendering tech-

iques. The synthetic data overcomes the barrier of limited data in

he training process and enables CNN techniques to achieve good

erformance. 

3D Head. The 3D head models used in our approach show var-

ed textures and geometrical structures. We use a commercial soft-

are FaceGen to generate such models. This software reconstructs

D models by computer vision techniques. In total, we generate

00 3D head models which involve different genders, races, and

ges. 

Rendering. We use Unity 3D engine to render RGB images for

ach head model automatically. The head model is imported into

nity 3D and placed on a virtual ground. In order to simulate the

rocess of obtaining real data, we place the camera at a fixed po-

ition and set the relative distance between the head model cen-

er and camera center within a certain range which is generated

andomly and limited from 800 to 1300 mm. We render from a

erspective view to get realistic head images. In this virtual scene,

he head model is rotated with sampled angles that follow a uni-

orm distribution. The angles are used as the pose ground truth of

ynthesized head images. The pipeline is illustrated in Fig. 2 . 

It is still challenging to mimic real data. The synthetic data has

o noise, whereas noise is very common in real data, which leads

o a subtle appearance difference between the synthetic data and

eal data. To mimic the effect of noise, we add Gaussian noise to
ach generated image to simulate the sensor noise in the imaging

rocess, similarly as in [36] . 

.4. Implementation details 

Training. Two datasets: our synthetic data and Biwi Kinect Head

ose Dataset, are used for training our model. The images in these

wo datasets are annotated with different categories and specific

arameters (pitch, yaw, and roll). There are 260 k synthetic images

nd 15 k real images in total. Before feeding the input images and

round-truth to the network, the images are preprocessed by crop-

ing to keep the face region only [37] ; resizing to 256 × 256 pixels;

onverting to grayscale. For all training process, we use the same

plit strategy of data that includes both synthetic images and real

mages, 80% for training and 20% for testing. 

Our two sub-networks are trained simultaneously. In each

raining iteration, we use a min-batch of 128 images, 64 of which

re annotated with the groundtruth category labels, and the rest

ith pitch, yaw, and roll groundtruth. The whole training scheme

f our model is presented in Fig. 3 (a). The conv1 to conv21 blocks

re shared between both tasks of classification and regression si-

ultaneously using all the images in the batch. For the layers spe-

ialized for each sub-network, they are trained using only those

mages in the batch with the corresponding ground-truth. Con-

isely, in Fig. 3 (a), we just illustrate one regression network as a

epresentative of the regression phase. 

Both classification and regression networks are initialized from

he weights of GoogLeNet, which is pre-trained on the large-scale

mage classification dataset, ImageNet, with 1M images. The learn-

ng rate is set to be 0.01, weight decay is 0.0 0 05, and momentum

s 0.9. The network was trained over 40 k iterations. Moreover, we

se a GPU-based engine and optimize the network parameters us-

ng asynchronous stochastic gradient descent. 

Testing. While our two sub-networks are trained in parallel,

hey work in a cascaded way (see Fig. 3 (b)) during testing. Given

n input image for estimation, we first classify the head pose into

ne of the four defined categories. Then one regression network

s selected according to the category to estimate the final param-

ters of the head pose. Since the two initial convolutional blocks

re shared between the classification and regression networks, we

irectly feed the convolutional feature into the selected regression

etwork. 

. Experiments 

We implemented our approach and conducted experiments on

 Linux machine equipped with an Intel i7-5930K CPU and an

vidia GeForce GTX 1080 GPU. 

.1. Dataset details 

We evaluate our approach on both synthetic dataset and real

ataset: synthetic images from our generated dataset, real images

rom Biwi Kinect Head Pose Dataset [3] , Pointing’04 dataset [4] and

oston dataset [38] . To further verify the potential of the synthetic

mages when facing the dataset bias problem, we conduct analy-

is between the synthetic data and real data. Please refer to sup-

lementary material for exemplary images and detailed analysis of

hese datasets. 

Synthetic dataset: There are 310 k RGB images totally, which are

enerated from 300 3D head models (200 males and 100 females).

he RGB images have a resolution of 640 × 480 pixels. After crop-

ing, the face image has 90 × 110 pixels. As shown in Fig. 4 , the

ead pose range covers ± 75 ◦ of pitch, ± 50 ◦ of yaw, and ± 20 ◦ of

oll. 
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Fig. 2. The pipeline for generating synthetic head pose images. The 3D head is rotated along the pitch, yaw and roll axes based on the randomly generated ground truth. 

Fig. 3. Schematic diagram of our model in training (a) and testing (b). (The real dataset in (a) includes Biwi Dataset, Pointing’04 Dataset, and Boston Dataset.) 

Fig. 4. Examplar synthetic head poses. 
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Biwi dataset: This dataset contains 15.7 k images taken from 20

people. Each image has a resolution of 640 × 480 pixels, and a face

typically consists of 90 × 110 pixels. The head pose range covers

± 50 ◦ of pitch, ± 75 ◦ of yaw and ± 20 ◦ of roll. Additionally, to the

best of our knowledge, this is the only released dataset that con-

tains both RGB and depth images, which are shown in the first line

of Fig. 5 . 

Pointing’04 dataset: This dataset contains 2.7 k images taken

from 14 people, who wear glasses or not and have varied skin col-

ors. The head pose is represented by two angles: pitch and yaw.

Each angle is a discrete value which varies from −90 ◦ to +90 ◦. The

yaw has an interval of 15 ◦, and the pitch has an interval of 15 ◦ and

30 ◦. The dataset is demonstrated in the second line of Fig. 5 . 

Boston dataset: This dataset contains 14.4 k images taken from

5 male. The ground-truth of each image changes continuously on
itch, yaw, roll. The range of these three angles covers ± 20 ◦. Some

xamples are shown in the last line of Fig. 5 . 

Analysis: The presence of a bias in data collection has recently

ttracted a lot of attention in the computer vision community

howing the limits in the generalization of any learning method

rained on a specific dataset. To further verify the potential of the

ynthetic images when facing the dataset bias problem, we con-

uct an analysis on the existing dataset with continuous annota-

ions (Biwi Dataset). We randomly extracted a sequence from the

ynthetic dataset and Biwi Dataset respectively, and visualized the

istributions of each angle (i.e., pitch, yaw, and roll), which are pre-

ented in Fig. 6 . The distribution of our synthetic data is uniform

cross each angle value of pitch, yaw, and roll respectively. On the

ontrary, the distribution of real data is mainly concentrated on

ertain angle values. 
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Fig. 5. Exemplar images from different datasets. We evaluate Coarse Classification Phase on three kinds of real datasets: Biwi Kinect Head Pose Dataset, Pointing’04 Dataset 

and Boston Dataset. 

Fig. 6. The distribution of synthetic data and real data across each angle value, respectively, i.e., pitch, yaw, and roll. Obviously, the distribution of our synthetic data (vertical 

axis) is more uniform over the range of values for each angle (horizontal axis). 

Table 2 

Comparison of different classification strategy on both synthetic dataset and real 

datasets. Each row demonstrates the accuracy of one classification strategy, when tak- 

ing different angles into account. 

# Category ( θ p , θ y , θ r ) Accuracy (Synthetic images) Accuracy (Real images) 

1 ( 
√ 

, 
√ 

, 
√ 

) 76.95% 37.14% 

2 ( 
√ 

, 
√ 

, −) 99.92% 92.35% 

3 ( 
√ 

, −, 
√ 

) 65.25% 59.33% 

4 (−, 
√ 

, 
√ 

) 68.79% 62.16% 

5 ( 
√ 

, −, −) 98.11% 92.03% 

6 (−, 
√ 

, −) 98.50% 91.46% 

7 (−, −, 
√ 

) 77.47% 61.38% 
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.2. Evaluation on coarse classification 

Classification strategy. To further verify the efficiency of the clas-

ification strategy, we design six baselines, each of which corre-

ponds to different category definition. As shown in Table 2 , each

ow shows the accuracy of one classification strategy when tak-

ng different angles into account. The considered angle is marked

y a tick on the corresponding column. The sign of each consid-

red angle determines how to define categories. On the first row,

here are 8 categories, where the solution space is split into eight

arts according to the sign of pitch, yaw, and roll. For the 2nd to

th rows, there are four categories on each row. For the 5th to 7th

ows, there are two categories on each row. 

For the network of each baseline, we train the network with

ynthetic images and real images with different labels. For testing,
e use the remaining 10 k synthetic images and 20 k images from

iwi Dataset (10 k ), Pointing’04 Dataset (2 k ) and Boston Dataset

8 k ). All input RGB images are resized to a fixed size of 256 × 256

ixels. Table 2 illustrates the comparison results, which shows that

he second strategy achieves the best performance with an aver-

ge accuracy of 99.92% and 92.35% across the synthetic and real

ataset respectively. It is clear that the performance of strategies

onsidering the roll angle does not achieve satisfactory results.

his is mainly due to the fact that the range of roll angle is rel-

tively narrow and the head appearance along the roll axis is not

bvious. 

Head pose classifier. We test three classification models includ-

ng AlexNet, VGGNet, and ResNet-50 on 10 k synthetic images and

round 13.8 k real images (5.7 k from Biwi Dataset, 0.7 k from Point-

ng’04 Dataset, and 6.4 k from Boston Dataset). As illustrated in
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Table 3 

Performance of head pose classification in Coarse Classification phase on different networks. 

Method Synthetic Dataset Biwi Dataset Pointing’04 dataset Boston Dataset 

AlexNet 99.89% 80.91% 76.71.% 71.75% 

VGGNet 92.30% 84.02% 69.29% 80.05% 

ResNet-50 98.88% 89.63% 89.00% 90.45% 

Our method 99.92% 90.16% 89.86% 92.86% 

Table 4 

The mean error (ME) and standard deviation (STD) of head pose estimation on the real 

dataset (Biwi Dataset), expressed in degrees. The result in each cell of runtime repre- 

sents computational estimation time for each head pose image measured on the same 

machine equipment. Note that, we only list the computation time of the methods that 

estimate all three head pose parameters (i.e., pitch, yaw, and roll). 

Method Pitch error ( ◦) Yaw error ( ◦) Roll error ( ◦) Runtime (ms) 

ME STD ME STD ME STD 

Drouard et al. 8.85 9.97 8.7 9.0 – – –

Ricci et al. 10.5 – 9.1 – – – –

Liu et al. 11.35 8.29 9.65 8.04 10.42 5.81 0.49 

Ahn et al. 11.89 14.35 7.12 11.71 12.78 9.66 0.68 

Our method 5.48 3.23 4.76 4.33 4.29 3.30 0.56 

Table 5 

Performance of different training dataset in both Coarse Classification phase and Fine Regres- 

sion phase on real dataset (Biwi Dataset). The regression results are visualized by mean error 

(ME) and standard deviation (STD), expressed in degrees. 

Phase Method Testing on Biwi Dataset 

Classification Phase Baseline I 64.71% 

Baseline II 59.47% 

Our method 90.16% 

Pitch error ( ◦) Yaw error ( ◦) Roll error ( ◦) 

ME STD ME STD ME STD 

Regression Phase Baseline III 16.47 10.14 6.14 8.32 21.11 4.75 

Baseline IV 29.51 12.19 5.51 14.56 22.47 3.01 

Our method 5.48 3.23 4.76 4.33 4.29 3.30 
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Table 3 , the quantitative results of our method with the shared lay-

ers from GoogLeNet are more accurate than other models. 

Additionally, comparing the performance of our network with

different training data: synthetic data only and real data only, the

improvement of testing on the real dataset is significant: 64.71%

(synthetic data only), 59.47% (real data only) → 92.35%, which

shown in Table 5 . The improvement verifies the effectiveness of

our synthetic data, and also demonstrate the compatibility be-

tween synthetic data and real data on classification task. 

4.3. Evaluation on fine regression 

We adopt the testing set of Biwi Dataset for evaluating the per-

formance of our regression network. 

We compare our method to four state-of-the-art methods

[15,16,39,40] . We opt for the mean error and the standard devia-

tion of error metric, which is the commonly used evaluation crite-

rion in head pose estimation. The results are illustrated in Table 4 .

In each cell, the first value refers to the mean error of pitch, yaw,

and roll angle, respectively. The second value represents the stan-

dard deviation of error. It is clear that our regression network

achieves impressive results on Biwi Dataset even with a relatively

simple network architecture: the mean error is under 5.5 ◦ for all

of the three angles, with a small standard deviation under 4.5 ◦. 

Moreover, we also compare the performance of our regres-

sion network with only real data during the training process. The

testing results on Biwi Dataset exceed the acceptable range, i.e.,

29.51 ± 12.19 shown in Table 5 , which is due to the insufficient

real datasets for training a deep network. Images from these real
atasets suffer from the limited variation and number of available

amples. Not surprisingly, the reported results demonstrate signifi-

ant improvement when training with both synthetic and real data,

hus verifying the compatibility between these two types of data

onsequently. 

Overall, our two sub-networks estimate promising results on

ar with the state-of-the-art approaches. Moreover, the compu-

ation time for each testing head pose image in Biwi Dataset

chieves 0.56ms. Considering the shared convolutional layers at

he bottom of these two networks, our model achieves a good

radeoff between performance and computation efficiency. 

.4. Discussions on various conditions 

Inhomogeneous illumination, partial occlusions and motion blur

re very common in real images or videos. To further verify that

ur Coarse-to-Fine cascade CNNs are robust to such situations, we

how that our networks can also be tested on a variety of images

hat involve different illumination conditions, occlusions and blurs.

ince the annotations of this kind of real images are scarce, we

urther generate another 50 k synthetic RGB head pose images for

esting. Please refer to our supplementary materials for the exem-

lary generated images. 

Inhomogeneous illumination. The image quality obtained by

ameras in the wild is always affected by varying illumination con-

itions. To better understand the influence of illumination condi-

ions, we test our approach on 30 k synthetic images that are ren-

ered under different illumination conditions, i.e., different illumi-

ation angles, intensities, and colors. 
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Fig. 7. Exemplar images of different illumination conditions. please in color print for better visualization. 

Fig. 8. Exemplar images of different occlusions. 

Table 6 

The mean error (ME) and standard deviation (STD) of head pose estimation under different illu- 

mination conditions, expressed in degrees. 

Illumination conditions Pitch error ( ◦) Yaw error ( ◦) Roll error ( ◦) Runtime (ms) 

ME STD ME STD ME STD 

Angles 6.23 5.13 7.20 5.02 5.44 4.21 0.57 

Intensities 6.09 4.94 8.25 5.30 5.33 5.47 0.62 

Colors 6.92 4.42 9.57 5.62 4.99 6.75 0.53 
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We apply the following settings for each rendered frame: (1)

or different angles of illumination, we only change the horizontal

irection of the illumination angle. The illumination angles range

rom −100 ◦ to 100 ◦ with an interval of 20 ◦. (2) For illumination

ntensity, we set the range from 0.3 to 1.2 with an interval of 0.1.

3) For different colors, we choose ten typical colors for testing,

ncluding red, orange, yellow, green, cyan, blue, purple, pink, gray

nd white. As shown in Fig. 7 , the newly rendered images under

ifferent conditions are significantly different from the training im-

ges. 

In Table 6 , we use the same head pose images rendered under

ifferent illumination conditions for testing and we only consider
erformance on synthetic data. Our approach achieves 93.55%,

6.36%, and 90.20% in classification accuracy for different condi-

ions, i.e. , different angles, intensities, and colors. The mean and

tandard deviation of the final head pose estimation errors tend

o be consistent. Although the mean errors of each parameter have

ncreased slightly, it still implies that the cascade network and syn-

hetic dataset can effectively solve the problem. In Table 6 , we in-

lude the corresponding computation time. We can observe that

ur model only takes about 0.57ms to process a head pose image

nder different illumination conditions. 

Motion blur. It is common for the subject’s head to move

uring image capturing, which causes motion blur. Handling the
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Table 7 

The mead error (ME) and standard deviation (STD) of head pose estimation on blurred 

images and images with occlusions, expressed in degrees. 

Test Pitch error ( ◦) Yaw error ( ◦) Roll error ( ◦) Runtime (ms) 

images ME STD ME STD ME STD 

Blurred 6.39 7.11 8.07 7.75 6.30 5.97 0.60 

Occlusion 7.41 8.71 8.48 8.09 7.88 4.13 0.67 

Fig. 9. Exemplar images of blurred images. (a) The original synthetic image and 

the corresponding blurred image. (b) The real image and the corresponding blurred 

image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

The mead error (ME) and standard deviation (STD) of different similarity measures 

of head pose estimation on real depth images from Biwi Dataset, expressed in de- 

grees. The result in each cell of runtime represents computational estimation time 

for each head pose image measured on the same computer configuration. 

Method Pitch error ( ◦) Yaw error ( ◦) Roll error ( ◦) Runtime (ms) 

ME STD ME STD ME STD 

Fanelli et al. 5.2 7.7 6.6 12.6 6.0 7.1 2.79 

Wang et al. 8.8 14.3 8.5 11.1 7.4 10.8 40 

Borghi et al. 4.5 4.7 5.3 5.2 7.5 7.3 29 

Our method 4.23 5.13 5.16 5.32 5.39 2.61 1.89 
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effect of motion blur is an important problem in many visual anal-

ysis types of research. Therefore, we test our approach on its abil-

ity to deal with such a situation. We blurred the head pose images

with a Gaussian function and obtain a collection of 10 k images.

Fig. 9 shows some examples of both synthetic images and real im-

ages. 

The classification accuracy achieves 89.05% under such blurring

conditions. The estimation results of blurred real images are shown

in the first row of Table 7 . Compared to the results in Table 4 , it is

clear that the results decrease obviously in pitch and yaw. The rea-

son is that our generated training images are all in high resolution

with no blur. 

Occlusion. Real images of head pose often have occlusions,

which may be caused by the camera’s view or some minor self-

occlusions. To further test the strength of our approach in han-

dling occlusions of images, we generate 10 k RGB images covered

with black masks (shown in Fig. 8 ). We use a fixed size of a black

square with 60 × 60 pixels and a black rectangle with 60 × 120 pix-

els to randomly cover both synthetic images and real images. 

The classification accuracy achieves 71.29%, and the estimation

results are reported in the second row of Table 7 , which indi-

cate that the cascade CNNs can effectively estimate the occluded

images. From the table, we can see that the accuracy has de-

clined slightly. In order to enhance the robustness of our proposed

method, we will improve the approach of synthesizing images to

mimic more realistic images and add them to the training data. 

4.5. Leveraging depth images 

With the development of sensing technologies, such as Time-

of-Flight sensors and the Microsoft Kinect, capturing RGB-D im-
Fig. 10. Examplar images of depth head poses. (For visualization
ges becomes easy. New methods that work on depth images are

merging, such as human pose detection in depth frames [41] . To

ive a deeper insight of our proposed coarse-to-fine method, we

xplore whether our approach can be extended to the depth im-

ges to estimate head poses. 

We generate a depth head pose dataset using a similar ap-

roach of generating the synthetic RGB images, which includes 60 k

epth images. The depth images are obtained by calculating the

istance between the camera and each pixel of the head model

sing Physics Raycast in Unity 3D. We compute the distance be-

ween the camera and the intersection point as the depth value.

ome generated depth images are shown in Fig. 10 . Similar to the

rocess of the generated RGB images, the generated depth images

re preprocessed by cropping to keep the face region only; resizing

o 256 × 256 pixels; normalizing the pixel values of depth images

o the range of [0,1]. 

We compare our method with three proposed methods on

epth images: random forest-based estimation [3] , SIFT-HOG based

stimation [42] , and CNN based estimation [43] . The mean and stan-

ard deviation of the head pose estimation error are reported in

able 8 . Note that all these approaches are tested on Biwi Dataset,

here the images are captured by Kinect. Although the standard

eviations of pitch and yaw estimation of our approach are slightly

igher than that of other methods, it still demonstrates that our

ascade networks can achieve reasonable performance on depth

mages: the mean error is under 5.4 ◦ for all of the three angles.

or all the methods, we include their computation time. All tim-

ngs were measured on the same computer configuration. We can

bserve that our method only takes about 1.89ms to estimate a

ead pose depth image, and is the fastest one. Moreover, for the

on-deep learning method [3] , it is the fastest method (7.7ms per

mage on CPU). 
 of the depth images, we rescale the range of pixel value.) 
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. Conclusion 

This work proposed a novel head pose estimation model, which

xplores to leverage synthetic data to train a Coarse-to-Fine deep

etwork in a joint leaning manner. Extensive experiments have

een conducted on several publicly available benchmarks and de-

ailed analysis are reported on issues such as the estimation accu-

acy on images with different illumination conditions, motion blur,

nd occlusions. 

Currently, we have synthesized head pose images with different

ender, age, and race, but our synthesis framework is flexible to

ccommodate additional criteria such as different emotion expres-

ions, hairstyles, and accessories. Moreover, the proposed image

ynthesis pipeline can be easily modified so as to synthesize di-

erse images for solving different tasks, e.g. , hand pose estimation,

uman pose estimation, and gait recognition, avoiding the process

f manually collecting and annotating data. 

The proposed approach can be applied to support different ap-

lications. For example, in driving assistance, the proposed pose

stimation approach can help to detect human attention and fa-

igue driving, which will improve the driving safety. In entertain-

ent, our approach can collaborate with current AVATAR tech-

ique [44,45] to animate a virtual character, which can have the

ame pose with the user in the real world. In addition, our ap-

roach may assist the disabled people to interact with computer

r robot in a natural way. 

Limitation and Future Work. The main practical limitation is that

ur head pose is estimated in terms of the single input image.

his enables the generalization of our approach to any applications

ut ignoring contextual information when applied to video. Mov-

ng forward, one interesting direction for future work is to consid-

ring contextual head pose constraints to limit it to a more subtle

ange, thus improving the final parameter estimation accuracy. 

By learning with depth head pose images, we are able to learn a

odel that generalizes to any illumination conditions. An interest-

ng future direction would be to train a neural network on depth

mages with motion blur and occlusions. 
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