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Figure 1: Our approach deforms and partitions a set of 3D models to fabricate a set of fully interchangeable components, which can be
assembled into novel objects with a coherent appearance.

Abstract

Interchangeable components allow an object to be easily recon-
figured, but usually reveal that the object is composed of parts.
In this work, we present a computational approach for the design
of components which are interchangeable, but also form objects
with a coherent appearance which conceals their composition from
parts. These components allow a physical realization of Assembly
Based Modelling, a popular virtual modelling paradigm in which
new models are constructed from the parts of existing ones. Given
a collection of 3D models and a segmentation that specifies the
component connectivity, our approach generates the components
by jointly deforming and partitioning the models. We determine
the component boundaries by evolving a set of closed contours on
the input models to maximize the contours’ geometric similarity.
Next, we efficiently deform the input models to enforce both C0
and C1 continuity between components while minimizing deviation
from their original appearance. The user can guide our deformation
scheme to preserve desired features. We demonstrate our approach
on several challenging examples, showing that our components can
be physically reconfigured to assemble a large variety of coherent
shapes.
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1 Introduction
In the typical process of shape creation, a shape is constructed
virtually on a computer, and then fabricated into the real world.
Once fabricated, the shape’s geometry is fixed. Computer Graphics
research has made great strides in allowing non-experts to create
shapes through this process.

In this paper, we focus on an alternate shape creation process in
which a set of components is fabricated which is capable of being
assembled into a range of possible shapes. The advantage of this
process is that the shape’s geometry is easy to reconfigure. This
property is useful when a different shape is desired at a different
time and for a physical exploration of possible shapes. Further-
more, the set of possible shapes may be much larger than the set of
components. For example, the set of components shown in Figure 1
can construct over 50,000 different humanoid figures. Directly fab-
ricating this set of shapes would be prohibitively expensive.

Two real world examples of this process are construction toys such
as Lego Bricks and Mix-and-Match toys such as Mr. Potato Head.
These systems vary in the range of shapes they can construct, the
ease of reconfiguring to a different shape and how coherent the
shapes’ appearance is. Lego Bricks are flexible enough to construct
almost any shape, but are tedious to reconfigure and produce shapes
with a distinctive blocky appearance as shown in Figure 2(a). Mix-
and-Match toys use a set of interchangeable components to con-
struct a much narrower range of shapes, but are easier to reconfig-
ure and produce shapes with a smoother appearance. However, the
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Figure 2: Mr. Potato Head constructed from (a) Legos and (b)
Interchangeable Components. The Legos induce an unnatural pix-
elated appearance. (c, d) Commercially available interchangeable
components for vehicles and animals. Note the simple geometry
and clear boundaries between components.

geometry constructed by these toys is usually extremely simple and
possesses an abstract look which makes the component boundaries
perceptible as shown in Figure 2(b, c, d).

In this paper, we introduce a computational approach for design-
ing interchangeable components which construct complex, diverse
geometry and connect so that the visual impact of the junctions
between them is minimal. Designing such components by hand
would be very difficult. For example, in the humanoid components
shown in the teaser, twenty-five pairwise compatibility constraints
must be considered to ensure that any head can connect to any body.
Fulfilling these constraints while preserving the shapes’ appearance
is challenging with traditional modelling tools. Figure 3 illustrates
how several constraints must be satisfied simultaneously to produce
interchangeable parts.

Our approach takes a set of compatibly segmented models as input.
Guided by the segmentations, it deforms and partitions the models
into physically interchangeable components. Because of their inter-
changeability, the components can construct a wide range of novel
shapes not seen in the input models.

At the essence of our approach is a novel geometric problem: given
a set of models, output a set of components, such that the connect-
ing boundaries of compatible components are identical (up to rigid
transformation), and the deviation of the components from their
original geometry is minimized.

Our solution proceeds in two steps. First, to determine the com-
ponent boundaries, we apply a novel optimization which evolves
a set of closed contours on surfaces such that their geometric sim-
ilarity is maximized. Second, we deform the meshes so that the
interchangeability constraint is met. Our deformation scheme dis-
tributes the distortion evenly over the meshes, and allows the user
to interact with the optimizer to find a deformation that preserves
semantic attributes.

2 Related Work
Mix-and-Match Toys. Mix-and-Match Toys possess interchange-
able components that allow the user to change their appearance.
These toys are often designed to form shapes with an abstract look
which emphasizes the fact that they are assembled from compo-
nents. In contrast, our approach aims to make shapes with a coher-
ent appearance. The enduring popularity of these toys in the digital
era demonstrates the appeal of physically creating new shapes from
a collection of components. Indeed, research in developmental psy-
chology finds that hands-on toys are an effective way for children

Figure 3: Without considering interchangeability, the horse’s head
can fit with either the camel’s body or the wolf’s body seamlessly,
but not both. Considering interchangeability, the horse’s head can
fit with both the wolf’s body and the camel’s body seamlessly.

to learn spatial reasoning and express their creativity [Bond 2014;
Golinkoff et al. 2004]. Researcher Roberta Golinkoff advises par-
ents to “look for [toys] that children can take apart and remake or
reassemble into something different, which builds their imagina-
tion.” To the best of our knowledge, we are the first to introduce
specialized software for the design of these toys.

Assembly-based Modeling. Our work can be thought of as a
physical realization of Assembly-based Modeling, a popular mod-
eling paradigm in which new shapes are constructed by connecting
components from existing shapes. Funkhouser et al. [2004] intro-
duced the concept of Assembly-based Modeling. In their work,
the shapes to extract components from are found by querying a
database based on shape similarity to an existing shape. The user
then interactively extracts the components through intelligent scis-
soring. In a work by Sheffer et al. [2007] the extraction and compo-
sition of components was fully automated. Chaudhuri et al. [2010;
2011] introduced techniques for automatically suggesting compo-
nents to be added to an existing shape, using the shape’s geometric
or semantic attributes. Jain et al. [2012] used assembly-based mod-
eling and analysis of shape contacts to generate plausible blends
between two existing shapes. Kalogerakis et al. [2012] introduced
a fully automated method which used assembly-based modelling
and a probabilistic model of component compatibility to synthe-
size plausible novel shapes from a database of existing shapes. In
the virtual setting of these works, there is no need to enforce com-
ponent interchangeability since a unique deformation can be com-
puted whenever two components are connected. However, inter-
changeability is highly desirable in our physical setting, because
it allows a small number of components to construct a large num-
ber of shapes. Hence these works focus on very different problems
from ours.

Partitioning Shapes for Fabrication. Luo et al. [2012] proposed
an approach to automatically partition a shape into components us-
ing a binary space partitioning tree, in order to maximize 3D print-
ing efficiency. Hu et al. [2014] partitioned into pyramidal compo-
nents. Chen et al. [2015] and Yao et al. [2015] also optimize for
the component packing. Our work partitions shapes into fabrica-
ble components as well, but we determine the partition based on
completely different criteria.

Shape Optimization for Fabrication. Several works optimize the
geometry of an existing shape so that it possesses a desirable phys-
ical property when fabricated. The various properties examined in-
clude stability [Preost et al. 2013], spinnability [Bächer et al. 2014],
and aerodynamics [Umetani et al. 2014]. These works solve phys-
ical problems, whereas our work deals with the geometric problem
of generating interchangeable components.

Fabrication-aware Design. Several works introduced methods
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Figure 4: Overview of our approach.

which assist the user in creating 3D designs suitable for fabrication.
Umetani et al. [2012] introduced an interactive furniture design sys-
tem which provided suggestions to help the user achieve a stable
and durable design. Lau et al. [2011] proposed a method to con-
vert non-fabricable furniture models to fabricable ones by parsing
the models with a grammar and automatically adding connectors
and hinges. Schulz et al. [2014] introduced a data-driven system in
which parametrized components can be attached together to create
designs suitable for fabrication. Koo et al. [2014] described a sys-
tem which automatically creates a fabricable shape with mechanical
parts that possess functional relationships specified by the user. In
these works, the process of exploring the shape design space takes
place in the virtual realm, whereas our work brings it into the phys-
ical world.

3 Overview

Figure 4 shows an overview of our approach. Our goal is to parti-
tion a set of input shapes into components which can be physically
connected to form novel objects, while minimizing the visual im-
pact of the junctions between components.

Representation. Our input shapes are represented as triangle
meshes. We assume the meshes are aligned with consistent front-
back and top-down directions and scaled to a consistent size. Each
mesh is assumed to have been segmented into semantically mean-
ingful regions. We clarify that the task of our approach is to adjust
the borders between semantic regions in order to maximize geo-
metric compatibility. The task of determining what the semantic
regions are is a separate, open problem in Computer Graphics. The
semantic segmentation can be obtained automatically using a data-
driven approach [Kalogerakis et al. 2012], a fully automatic geo-
metric approach [Sidi et al. 2011] or with an interactive tool. The
semantic segmentation guides how the input meshes should be par-
titioned into interchangeable components and specifies the compo-
nent connectivity. Components corresponding to the same semantic
border (e.g., between the body and leg in Figure 5) from different
meshes should be interchangeable. For example, the camel’s leg
can be disconnected from the camel’s body to replace the horse’s
leg. For the results shown in the paper, the input segmentations for
the animals (Section 8.1) were obtained with the data-driven ap-
proach of [Kalogerakis et al. 2012], while the others were obtained
interactively. Experiments in Sections 8.2 and 8.3 suggest that if
the input segmentation is reasonable, the results of our approach
will also be reasonable, i.e., the approach is not heavily sensitive to
the input segmentation.

Each semantic border (between two segments) on each mesh forms
an individual edge loop, as depicted in Figure 5(a). Note that the
individual edge loops for the same semantic border on different

Figure 5: (a) The individual edge loop lhorse,(head,body) lies along the
semantic border originally. (b) Edge loops with a common shape
are used to partition the front leg and body for both the horse and
camel. (c) The camel leg can replace the horse leg if their individual
edge loops have the same shape. The camel leg cannot replace the
horse leg if their individual edge loops have different shapes.

meshes are different in shape. We describe the segmentation of
each mesh m by a set of individual edge loops, Lm = {lm,b},
where individual edge loop lm,b is extracted from semantic border
b of mesh m.

To ensure that corresponding components from different meshes
are interchangeable we need corresponding individual edge loops
to form a common shape (up to rigid transformation and small dif-
ferences due to different mesh tessellation). Figure 5(b–c) shows
an illustration. To achieve this common shape, we will create a
common edge loop to link up all the individual edge loops for each
semantic border. We denote the common edge loop for the semantic
border b as lc,b.

Technical Approach. Our approach proceeds as follows. First,
it adjusts the individual edge loops at the semantic borders of the
input meshes, to optimize their geometric similarity while not de-
viating too much from the original segmentation. Next, it deforms
the input meshes so that the individual edge loops take on the shape
of a common edge loop. Finally, the deformed meshes are parti-
tioned by the individual edge loops into interchangeable compo-
nents, which are sealed and augmented with connectors which al-
low them to be assembled in the real world.

Problem Formulation. Given a set of input meshes M and a
set of individual edge loops Lm for each mesh m ∈ M, our ap-
proach outputs a set of deformed meshesM′ and a set of modified
individual edge loops L̂m. The modified individual edge loops par-
tition each deformed mesh m′ ∈ M′ into fabricable components.
Our outputs should possess the following properties:

1. M′ ∼M. Each deformed mesh m′ ∈ M′ should be similar
to its corresponding input mesh m ∈M.

2. For any semantic border b and any deformed mesh m′ ∈M′,
we should have lm,b = R(lc,b), where R is a rigid trans-
formation. That is, all the individual edge loops for a given
semantic border should possess a common shape up to rigid
transformation. This condition ensures that our components
are interchangeable.

4 Finding Individual Edge Loops

Consider a semantic border b (e.g., between the head and body in
Figure 6(a)). Given the initial edge loops lm,b for each mesh, this
step searches for new edge loops l̂m,b, which are geometrically sim-
ilar to one another. We have this goal because the next step will
deform the meshes so that the corresponding individual edge loops
form a common shape, and we want to minimize this deformation.
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Figure 6: (a) The contour for the lhorse,(head,body) semantic border.
The contour is shown in grey, the initial semantic regions in cyan
and pink, and the intermediate zone boundaries in orange. (b) The
contour vertices (red) lie on mesh edges. (c–d) After crossing a
mesh vertex, new contour vertices (blue) are created on outgoing
edges.

Note that this step updates the edge loops by modifying the list of
vertices specifying the loop, but not by altering the vertex positions.

Contour-based Formulation. The problem of adjusting the in-
dividual edge loops is discrete in nature. In order to avoid a com-
binatorial optimization over possible edge loops, we re-formulate
the problem in a continuous setting. In this setting, we have the
following problem: given a set of surfaces and a set of closed con-
tours that lie on each surface, adjust the contours to maximize their
geometric similarity. The contours are a continuous representation
of the edge loops.

To prevent the contours from deviating too severely from the orig-
inal semantic borders, we create a zone on each surface called the
intermediate zone which the contour is constrained to lie in. The in-
termediate zone between two semantic regions represents the area
which does not clearly belong to one region or the other. Figure 6(a)
shows the intermediate zone between a horse’s head and body. By
default we set the intermediate zone with a simple procedure. We
set each semantic region’s portion of the intermediate zone equal
to the faces in that region that lie within a geodesic distance d of
the original semantic border. We determine d by increasing it until
the area of the included faces exceeds 50% of the semantic region.
However, the intermediate zone can be adjusted by the user if the
default setting is unsatisfactory.

We use an explicit, piecewise linear representation of the contours
in which contour vertices are constrained to lie on mesh edges, fol-
lowing the formulation in [Bischoff et al. 2005]. In this formula-
tion, vertices are added and removed from the contour as it evolves
on the surface to adapt its resolution to the underlying tessellation.
Figure 6 shows an example of new contour vertices being created
when an existing contour vertex crosses a mesh vertex. See the
cited paper for further details.

Compatibility-based Contour Optimization. In previous set-
tings, active contours or ”snakes” have been optimized with respect
to a property of the surface which they lie upon. We deviate from
previous work by jointly optimizing a set of contours for geomet-
ric similarity with each other. Our measure of geometric similarity
considers distances between contour points (C0 continuity), as well
as angles between contour normals (C1 continuity). Both factors
are necessary to achieve a smooth transition between components
as shown in Figure 7d.

Formally, we seek to minimizeEdis, the sum of pairwise dissimilar-
ities between contours:

Edis(C) =
∑

cp,cq∈C

D(cp, cq) +D(cq, cp), (1)

(a) Semantic Segmentation Only (b) Compatibility-based Optimization
Without C1 Term

(c) Compatibility-based Optimization
With C1 Term

(d) Camel head on Wolf body

Figure 7: We compare three ways of choosing the individual edge
loops. In (a-c) we show the resulting components (top) and loops
(bottom). Using the original semantic segmentation (a) results
in geometrically dissimilar loops compared to our compatibility-
based optimization (b - c). In (d) connecting the camel head to the
wolf body reveals the effect of the C1 term. Without the C1 term, a
seam is visible despite C0 continuity.

D(cp, cq) =

∫ 1

0

(
‖vt

p − ṽq(vt
p))‖2 − λ · nt

p • ñq(vt
p)
)
dt (2)

where vt
p maps the normalized arclength parameter t ∈ [0, 1] to a

position along the contour cp and nt
p does the same for a normal

vector along cp. ṽq(x) returns the location of the closest point on
the contour cq to the point x while ñq(x) returns the normal of the
closest point. λ is a weight controlling the trade-off between opti-
mizing similarity between normals and between positions. Essen-
tially, D(cp, cq) sums the average squared distance to the contour
cq along cp and the average difference in normal vectors between
the points on cp and their closest points on cq .

The contour normals are computed by linearly interpolating the ver-
tex normals on the underlying mesh. The weight λ is set equal to
αl where l is the median bounding box diagonal of the initial edge
loops. In order to prioritize C0 continuity over C1 continuity, we
set α = 0.1. We approximate the integral in equation 2 by taking
the average distance over a set of uniformly spaced points on the
contour. The distances and nearest points are efficiently computed
with an axis-aligned bounding box tree.

When evaluating the objective, each contour is aligned to a com-
mon local frame, by finding the minimal transformation that maps
its centroid to the origin and maps the plane generated by a least
squares fit on its vertices to the x y-plane.

We initialize the contour to the original semantic border and use Eu-
ler’s method to minimize the objective. Small time-steps are nec-
essary because the number of vertices in the contour can change
when an existing contour vertex runs into a mesh vertex. Neverthe-
less, the minimization rapidly converges to a solution. We terminate
the optimization when the relative improvement in the objective is
less than 5% for 100 iterations.

The contour representation is flexible enough to generate new edge
loops with complex, non-elliptical shapes that deviate significantly
from the initial ones when necessary as shown in Figure 18c. In
Sections 8.2, 8.3 and 8.4 we evaluate the behaviour of our contour
optimization and its effect on the subsequent steps of the approach.
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Figure 8: (a) Snapping the common edge loop to the individual
edge loops. (b) Deforming the meshes to match with the common
edge loop. After the deformation, the individual edge loops of the
components are identical and the components are interchangeable.

Our approach applies the above procedure separately for each se-
mantic border. After this step, for each semantic border b of each
mesh m, the individual edge loop is updated from lm,b to l̂m,b by
snapping the contour vertices to their nearest mesh vertex. Fig-
ure 7(a-b) shows a comparison between the individual edge loops
extracted directly from the input semantic borders and those found
by our optimization. The loops found by the latter are much more
similar in shape. Figure 7(c-d) shows the necessity of considering
C1 continuity when optimizing the contours.

5 Deformation to Common Edge Loops

In Section 4, for each semantic border, we obtained a combination
of individual edge loops C = {l̂m} that are similar in shape, one
loop for each input mesh m. In this section, we describe how to
create a common edge loop lc using this combination of individual
edge loops C for each semantic border. The individual edge loops
for each semantic border will assume the shape of lc in order to
produce interchangeable components.

Our approach proceeds in two steps. First, for each semantic bor-
der b, we find an initial shape for the common edge loop for b with
minimal total shape difference between it and each of the individual
edge loops. Then, in the second step we refine the shapes of all the
common edge loops simultaneously by solving a global optimiza-
tion which minimizes the total deformation of all the input meshes,
under the constraint that the individual edge loops on each mesh
take the shape of their common edge loop. This step considers the
total deformation of the meshes rather than just the edge loops.

5.1 Common Edge Loops Initialization

Again we focus our discussion on a single semantic border, as we
will apply this step independently per semantic border. We describe
how to create an initial common edge loop. Figure 8(a) shows an il-
lustration. Denote the common edge loop as lc, which is formed by
linking a series of vertices Vc = {vk}. We want to correspond the
vertices {vk} to the points on the individual edge loop l̂m (found
in Section 4) of each mesh m.

We parameterize each individual edge loop l̂m by its arc length.
l̂m(t) is a point on l̂m, where t ∈ [0, 1]. We suppose that each
vertex vk on the common edge loop lc corresponds to a point
xm,k = l̂m(tm,k) on the individual edge loop l̂m by tm,k.

Our goal in this step is to find the vertices Vc = {vk}, which
define the shape of the common edge loop lc; and the set of param-
eters T = {tm,k}, which defines the correspondences between the

(a) (b)

Figure 9: (a) Representing individual edge loop vertices in terms
of common edge loop vertices. Using the correspondence computed
from Section 5.1, each individual edge loop vertex u is projected to
u′ on the common edge loop, and is represented as a linear com-
bination of common edge loop vertices vk and vk+1. (b) Uhorse

contains all the individual edge loop vertices (green). Uhorse con-
tains all the other (interior) vertices (blue). We only show some of
the vertices for clarity.

common edge loop lc and each individual edge loop l̂m. We find
Vc and T simultaneously by solving a constrained optimization:

min
Vc,T

λE loop
def (Vc,T) + (1.0− λ)E loop

reg (T)

subject to tm,k < tm,k+1, ∀m, k.
(3)

Deformation. E loop
def penalizes deformation of the common edge

loop lc when its vertices {vk} are corresponded to points {xm,k}
on the individual edge loop l̂m for mesh m:

E loop
def (Vc,T) =

1

P

∑
m

∑
k

||(xm,k+1 − xm,k)

− (vk+1 − vk)||2,
(4)

where P is the squared length of the longest individual edge loop.

Regularization. E loop
reg encourages the corresponded locations of

the common edge loop vertices to spread evenly over the individual
edge loops:

E loop
reg (T) =

∑
m

∑
k

((tm,k+1 − tm,k)−
1

|Vc|
)2 (5)

The inequality constraint (tm,k < tm,k+1) preserves the ordering
of the common edge loop vertices in their correspondences with
the individual edge loops. We set the weight λ as 0.9. The op-
timization can be solved quickly using standard solvers such as
IPOPT [Wächter and Biegler 2006]. The optimization computes
optimized vertex positions v∗k which describe the initial shape of
the common edge loop. For each mesh m and each common edge
loop vertex k, it computes x∗m,k, the point on individual edge loop
l̂m which vertex k corresponds to.

5.2 Shapes and Common Edge Loops Refinement

In the previous step, for each semantic border b, we obtained the
initial shape for the common edge loop lc,b and the correspondence
between its vertices and points on the individual edge loop lm,b.

In this step, we refine the shapes of all the common edge loops
jointly, by considering the deformation induced on the input meshes
when the individual edge loops are constrained to assume the shape
of their common edge loop.
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Figure 10: Shape-preserving refinement. (a) Input shape. (b) Re-
sult produced without refinement by using the common edge loop
shapes from Section 5.1 as boundary constraints for mesh deforma-
tion. (c) Result produced with shape-preserving refinement. Note
that while both results can be used to form a set of interchange-
able components, the result in (c) more closely resembles the input
shape. For example, the nose looks more similar to the nose of the
input shape.

We use the correspondence obtained in Section 5.1 to link the shape
of the common edge loops to those of their individual edge loops,
by writing each individual edge loop vertex as a linear combination
of two common edge loop vertices. Figure 9(a) shows this process.

Shape-Preserving Refinement. We minimize the sum of defor-
mation of the input meshes, under the constraint that the individual
edge loop vertices are expressed as a linear combination of the com-
mon edge loop vertices. This constraint means that corresponding
individual edge loops will form the same shape, which is necessary
for part compatibility.

Consider a mesh m and its vertices Um ∪ Um, where Um

contains the vertices across all the individual edge loops of m,
and Um contains all the other vertices (i.e., interior vertices).
See Figure 9(b). We can express the individual edge loop ver-
tices Um in terms of the common edge loop vertices as shown
in Figure 9(a). So the deformation of mesh m is specified by
Vall

c ∪ Um instead of Um ∪ Um, where Vall
c contains the com-

mon edge loop vertices across all the semantic borders, e.g., Vall
c =

{Vc,(head,body),Vc,(head,tail),Vc,(head,left leg), ...}. We sum the de-
formation energy over all meshes:

Emesh
def (M) =

∑
m

wmE
m
def(V

all
c ,Um), (6)

where Em
def(V

all
c ,Um) is a normalized measure of the deformation

of mesh m and wm ∈ [0, 1] is a user-specified weight associated
with the deformation of mesh m which is set to 1 by default. The
method for minimizing this energy depends on the mesh deforma-
tion measure chosen for mesh m. A nice property of our construc-
tion is that if Em

def(V
all
c ,Um) can be minimized by solving a linear

system such as in Laplacian or As-Rigid-As-Possible mesh defor-
mation [Sorkine and Alexa 2007], then so can Emesh

def (M), since the
individual edge loop vertices are written as a linear combination of
the common edge loop vertices. One can also minimize the energy
by alternating between fixing Vall

c while solving for each Em
def, and

fixing Um while solving for Vall
c . In our implementation we used

the latter approach and used As-Rigid-As-Possible mesh deforma-
tion for Em

def.

Figure 8(b) visualizes the results of this refinement. We obtain a set
of refined common edge loops as well as a set of deformed meshes
M′. Figure 10 shows the advantage of our joint optimization over
a more naive approach where the initial common edge loop shapes
from Section 5.1 are held fixed when deforming the meshes.

(a) (b) (c)

Figure 11: (a) Surface sealing. A surface is created using RBFs
fitted over the domain of the common edge loop shown. Rays are
shot along positions sampled within the loop to determine the mesh
boundary, which the created surface should lie within. (b) Con-
nector Placement. Candidate locations (red) are evaluated from a
set of regular samples. Valid locations (green) lie within the mesh
boundary. (c) The most central valid location (green) is chosen as
the connector location, where in this case a female connector of a
triangular prism shape is placed.

6 Generating Interchangeable Components

Using the refined individual edge loops obtained in Section 5.2, we
partition the set of deformed meshesM′ into interchangeable com-
ponents. We seal the holes on the components resulting from the
partition, and then add connectors on the sealed surfaces to make
the components connectable.

Surface Sealing. As we use the same common edge loop for par-
titioning the same semantic border of different meshes, we create
a 3D surface for sealing for each common edge loop. Figure 11
shows an illustration. We create this surface by using radial basis
functions (RBFs) [Carr et al. 2001] fitted over the domain of the
common edge loop, with the RBF centers placed uniformly within
the loop. We use polyharmonic RBF basis functions. At any loca-
tion within the loop, the weighted sum of the RBFs gives a height
value; hence the RBFs specify a 3D surface over the loop.

In fitting the RBFs to form the 3D surface, the weights of the RBFs
are determined by an optimization [Wang and Oliveira 2003]. Our
objective minimizes the distance between the RBF surface and the
edge loop vertices. It also encourages a smooth and roughly planar
RBF surface by minimizing the magnitude of the RBF coefficients.
Finally, we add constraints on the height of the RBF surface at a set
of uniformly spaced sample points to ensure that it does not pene-
trate any of the meshes. We determine the value of these height con-
straints by shooting rays at the mesh, as illustrated in Figure 11(a).
Please refer to the literature [Carr et al. 2001; Wang and Oliveira
2003] for further details of surface completion based on RBFs.

Connector Placement. To allow the components to be conve-
niently connected and disconnected, our approach automatically
adds male and female connectors to each component. The male
connectors are simple beveled triangular prism shapes and the fe-
males are their complement, sized slightly smaller to create a desir-
able amount of friction.

Figure 11(b–c) illustrates the process. Across the sealed surface
of each component, we regularly sample candidate locations for
adding a connector. We determine the validity of each candidate
location by checking whether a connector to be placed there will
intersect with the component boundary. We choose the most central
valid location to be the location for putting a connector. A male
connector and a female connector are added respectively to a pair
of compatible components by CSG operations. We experimented
with using three connectors per component surface, but found that
simply placing a single connector as close as possible to the center
of the component surface results in a stable enough connection.



(a) (b)

Figure 12: Considering C1 Component Continuity. (a) Computing
an average normal. Average normals are recorded at a set of uni-
formly sampled locations on the common edge loop. (b) The neck
transition becomes smoother after incorporating C1 continuity.

7 User Interaction and Enhancements
We present some useful ways the user can direct our approach at
the high level and some extensions to our approach which improve
the quality and breadth of our results.

7.1 C1 Component Continuity Deformation

Our contour optimization in Section 4 tries to find edge loops with
high C1 continuity between them, but this goal may be unachiev-
able when large discrepancies in the initial geometry are present. In
these cases, the deformed components found in Section 5 may have
poor C1 continuity. To resolve this issue, we apply an additional
deformation step that locally enforces C1 continuity. Figure 12 il-
lustrates the technique and shows its effects. The main idea is to
build a representation of the average normal orientation around the
set of individual edge loops for each semantic border b, then deform
the meshes so that they conform to this orientation.

For each semantic border b, we align the common edge loop lc,b
(found in Section 5) with l̂m,b, the individual edge loop of mesh m
for b. We record the normal orientation on the mesh m at a set of
uniformly sampled locations on lc,b. For each sample location, we
record the average orientation across all the meshes.

We use the average orientations to give each individual edge
loop vertex a target normal vector and a transformed coordinate
frame. We propagate the transformed coordinate frames to the non-
boundary part of each mesh using an existing technique [Schmidt
and Singh 2010], which smoothly deforms the mesh to align its nor-
mals with the target normals. This step does not alter the positions
of the individual edge loop vertices, so the components will still be
interchangeable.

7.2 Higher Order Component Connectivity

Our basic approach assumes that the adjacency graph between com-
ponents is a tree. However, this assumption is not true for some
interesting shapes. Consider the problem of making interchange-
able arm components in a set of armchairs as shown in Figure 13.
Our basic approach fails in this situation, because it only guarantees
that individual edge loops belonging to a single semantic border are
equal. For the arm component this guarantee is not sufficient. As
shown in Figure 13(b), the arm component can connect along the
back border or the base border, but not both.

To resolve this issue we need to generalize the condition for inter-
changeability described in Section 3. We constrain the union of
individual edge loops across a set of semantic borders to be equal

Figure 13: Considering higher order connectivity in creating an in-
terchangeable arm component. (a) Input chairs. The relative trans-
formations of the (back,arm) loop and the (base,arm) loop with re-
spect to the (base,back) loop are different for each chair, stored in
R1 andR2 respectively. (b) The arm component created from chair
2 using our basic approach fails to connect completely to chair 1.
(c) After the extra optimization step considering higher order con-
nectivity, the arm component can connect properly with both chairs.
The chairs and arm are slightly deformed, and the relative transfor-
mations among each chair’s components are equal to the common
relative transformationsR.

(a) Input (b) No Preservation (c) With Preservation

Figure 14: Semantics preservation. (a) Input face. The user paints
the mouth region with higher weights to preserve the expression.
(b) Without considering semantics preservation (uniform weights),
the devil’s expression changes from a grin to more of a grimace
after deforming to achieve component compatibility. (b) Consider-
ing semantics preservation (higher weights on the painted region),
the devil still shows a grin after deforming. The deformation of the
other shapes did not change significantly as a result of the weight
adjustment.

(up to rigid transformation) rather than just a single semantic bor-
der, as before. For the example in Figure 13, this set would be
{(back, arm), (base, arm), (base, back)}.

We enforce this constraint by applying an extra optimization step
after the procedure described in Section 5. Figure 13(c) shows an
example. In the extra optimization step, the relative transformations
(position and orientation) of the loops in each mesh are constrained
to be equal to common relative transformations. Suppose R1 =

(R
(base,back)→(base,arm)
1 ,R

(base,back)→(back,arm)
1 ) is a tuple storing the

relative transformations from the (base,back) loop to the (base,arm)
loop and to the (back,arm) loop respectively for chair 1. Likewise
for R2 for chair 2. We constrain them to be the same, i.e., we set
R = R1 = R2.

The optimization minimizes the same objective function as in Equa-
tion (6), but this time with respect to the common relative transfor-
mations R (instead of directly on the loop vertices) and the non-
loop (interior) vertices. Note that when R changes, the loop ver-
tices will undergo a rigid transformation. Figure 13(c) shows the



(a) (b) (c)

Figure 15: Some existing chimera toys. Compared to our results,
the products have limited shape variability in (a, b), low geometric
detail in (b), and prominent divisions between components in (c).

result. The arm deforms to become longer to accommodate with
chair 1; the back of chair 2 deforms to become slightly shorter; the
relative transformations between the back, corner and base loops of
chair 1 are the same as those of chair 2.

We minimize Equation (6) by alternating between solving for the
non-loop (interior) vertex positions and the relative transformations
of the loop vertices, while keeping the other set of variables fixed.

7.3 Semantics Preservation

Our core approach is geometric in nature and does not consider
semantics. Therefore, when it deforms the input meshes to achieve
component compatibility, a mesh may lose some desirable semantic
quality. Figure 14 shows an example. Because our approach does
not explicitly consider the facial expression of the devil, it changes
the devil’s expression from a grin to more of a grimace. To resolve
this problem, we allow the user to interactively adjust the weighting
of the shape preservation energies Em

def in Equation(6) by painting
the surface of the mesh with modified weights. We assume that
Em

def is a weighted sum of per-vertex or per-face energies, which is
usually the case. By changing these weights we can emphasize the
preservation of certain regions in the final deformed meshes.

Figure 14(c) shows the result of preserving the grin after the user
labels the mouth region to have higher weight in the deformation
energy. Please refer to our supplementary video for a demonstration
of this feature.

7.4 Most-Compatible Subset Selection

When constructing a set of interchangeable components using our
approach, it may be necessary to restrict the number of input mod-
els. For example, when designing a children’s toy for assembling
animals similar to those in Figure 15, the user may only want to
include a fixed number of animals in the toy, to satisfy manufactur-
ing and packaging constraints. However, the user may have a much
larger database of animal shapes which could be included in the toy.
Our approach can conveniently find the subset of shapes which are
most compatible with each other. By most compatible, we mean
that our approach will have to deform the input shapes the least to
create interchangeable components.

To perform this task, we define a dissimilarity metric between input
meshes which leverages the compatibility optimization used in Sec-
tion 4. We compute the dissimilarity between mesh m and mesh n
as follows:

Dshape(m,n) =
1

|B|
∑
b∈B

min
cp∈Im,b,
cq∈In,b

D(cp, cq) +D(cq, cp), (7)

where B contains the semantic borders that exist in both meshes;
Im,b is the intermediate zone for semantic border b of mesh m, as
described in Section 4, likewise for In,b. D(cp, cq) measures the

(a) (b) (c)

Figure 16: (a) Initial edge loops selected for the most-compatible
size 4 subset of animals. (b) Deformation of the horse using the
most-compatible subset. (c) Same when using the full set of ani-
mals.

distance of contour cp from contour cq , as defined in Equation (2).
Essentially our metric sums the distance between the two closest
contours found at each semantic border. The closest contours are
found with the minimization procedure in Section 4.

Given a user specified value k, we can use our dissimilarity metric
Dshape and a branch-and-bound search to find the most-compatible
size k subset of the shapes in our database. The smaller the maxi-
mum dissimilarity between any two members of a subset, the more
compatible the subset is. We evaluate this technique in Section 7.4.
For a database which has several models belonging to the same cat-
egory, we recommend incorporating a geometric diversity metric as
described by Chaudhuri and Koltun [2010] into the search so that
the objective of component compatibility in the subset can be bal-
anced against the desire for geometric diversity.

8 Results and Experiments

8.1 Different Categories

We applied our approach to generate components for five types of
shapes: animals, faces, chairs, humanoids and insects. The input
shapes were taken from free 3D model repositories on the internet.

Animals. In this experiment we used our approach to generate a
set of components for constructing chimeric four-legged creatures.
Twelve animal shapes were used as the input to our approach.

We show the edge loops chosen by our compatibility-based opti-
mization in Figure 17(a). The loops for the tail component often
chop off a small portion of the animal’s rear, because the loops on
the actual tail did not possess enough geometry diversity. Despite
the wide geometric variation in the input set, our approach chooses
edge loops and deformations that make the assembled shapes look
coherent. Figure 20 shows a diverse set of animals assembled by
our interchangeable components.

This result was inspired by several similar commercial products.
However, all these products either possess a much more limited set
of constructible shapes than our result or make it very obvious that
the shapes are composed of components (Figure 15).

Most Compatible Subset of Animals: We applied our most-
compatible subset technique (Section 7.4) to find the most compat-
ible size 4 subset of the full set of animals. We show the subset and
some results in Figure 16. The algorithm selected the lion, horse,
wolf and dog. Note that the selected edge loops for the (tail, body)
border actually partition the tail, unlike the selected edge loops in
the full set of animals. We note that these shapes have to undergo
less deformation for component compatibility than when they are
used in the full set.

Faces. We used our approach to generate components for assem-
bling various stylized faces (Figure 17(b)). This result was inspired



(a) Animals (b) Faces

(c) Chairs (d) Humanoids

Figure 17: Generating interchangeable components for different types of shapes.



Figure 18: Some of the challenges involved in generating insect components. Refer to the text for explanation.

by the Mr. Potato Head toy. The Mr. Potato Head toy consisted of
abstract faces, but ours possess full detail.

Faces are a challenging example in our problem setting because hu-
mans are sensitive to minor distortions in facial appearance. Indeed,
the initial deformation from our approach caused the devil face to
loose its characteristic grin. Fortunately, our incorporation of inter-
activity into the approach allows us to resolve the problem with a
simple user edit (Section 7.3).

By segmenting meshes appropriately, our approach allows the user
to connect components to an object which did not originally have
them. For example, we connect horns to the ogre and human
face, which originally had no horns. Even in narrow, concave re-
gions, like the eyes, our approach generates components that con-
nect physically.

Chairs. We used our approach to generate components for assem-
bling several types of chairs (Figure 17(c)). These could be used to
furnish a doll house or even as real furniture if they were fabricated
at a large enough scale.

The extension to our approach to higher order connectivity (Sec-
tion 7.2) made the arm and rocking chair legs interchangeable.
These more stringent constraints created noticeable deformations
in some of the chairs, but none of that affected their functionality.

The ability of our components to turn any chair into a rocking chair
is a simple example of how interchangeable components can alter
the functional properties of shapes.

Humanoids. We generate components for several figurines which
allow the user to replace the legs with a mermaid’s tail and incor-
porate pose variation (Figure 17(d)). Despite a challenging amount
of diversity in the input models, such as the armadillo’s lack of a
neck, our approach arrives at a solution that makes the assembled
humanoids appear plausible. Figure 26 shows a diverse set of hu-
manoids assembled by our interchangeable components.

Insects. We generate components from the set of five insects and
a scorpion shown in Figure 18. All insects have a head, thorax,
abdomen and six legs, but these body parts possess an extraordinary
amount of diversity, making insects an especially challenging test
for our approach. In Figure 18 we highlight the challenges involved
in creating interchangeable components for the Stag Beetle. The

Figure 19: Some assembled insects.

initial semantic regions of the Stag Beetle and the edge loops found
by our compatibility optimization are shown in the center.

In Figure 18(a) we focus on the wings. The approach must find
an area on the beetle’s thorax for the grasshopper, fly, and but-
terfly wings to attach, without straying into adjacent semantic re-
gions. Despite this issue and the different shapes for the initial wing
boundaries (a.1), our approach finds a common edge loop shape that
does not distort the wings and allows all of them to connect to the
beetle. Since the attachment point needs to accommodate the large
butterfly wings, it barely fits onto the thorax.

Figure 18(b) shows how by extending the leg-thorax edge loop to
the beetle’s thorax our approach allows it to accommodate the much
larger scorpion pincer.

Figure 18(c) highlights an unexpected, yet beneficial deviation from
the original semantic regions in determining the individual edge
loops for the abdomen-thorax connection. The grasshopper pos-
sesses a very different layout of the wings, thorax and legs than
the beetle (c.1). The initial edge loops are very different in shape
(c.2). Our algorithm recognizes that the grasshopper does not have
the flexibility to adjust its edge loop very much, and instead mod-
ifies the beetle’s to get closer, which cuts a large section of its ab-
domen. Despite this deviation from the proper anatomy the com-
ponents connect to form a plausible shape (c.3). Without making
this cut, the deformation for compatibility unnaturally raises the
grasshopper’s abdomen (c.4).

Note that we have only shown the process for a single model. Our



Figure 20: Animals assembled by our interchangeable components. Note that each assembled animal is different and even more variations
are possible.

(a) With Insects (b) With Animals

Figure 21: The change in edge loops made by our approach for
maximizing the armadillo’s compatibility with (a) insects and (b)
four-legged animals. The original edge loops are shown in gray
and the new edge loops in red. Some shapes constructed from the
resulting components are shown on the right. The components can
form both upright and crawling shapes.

approach jointly considers these factors for six models. Conducting
this process by hand would be a tedious and difficult task. Figure 19
shows some assembled insects and their prints.

8.2 Cross-Category Components

We demonstrate that our approach is flexible enough to generate
interchangeable components which produce coherent shapes from
input models belonging to different categories. We combined the
Armadillo model from the humanoids collection with three insects,
and three four-legged animals. The Armadillo’s original seman-
tic segmentation from the humanoid example is directly compati-
ble with the insects. To make it compatible with the animals, we
merged the chest and abdomen into a single semantic region. No
other changes to the segmentation were made.

Figure 21 shows how our contour optimization scheme (Section 4)
generates significantly different edge loops depending on which
category we target. For example, because the insects tend to have
relatively narrow, circular shaped necks, the edge loop for the ar-
madillo is tightly closed around its neck. For the animals, which
have larger, oval-shaped chests, the armadillo’s edge loop cuts into
its chest. The resulting components are versatile, capable of gener-
ating creatures which walk upright or on four or six legs, as shown
in the constructed shapes in Figure 21.

8.3 Sensitivity to Initial Segmentation

We examine our approach’s dependence on the input semantic seg-
mentation. For three faces, we run our contour optimization (Sec-

(a) Original Segmentation (b) Small Perturbation

(c) Medium Perturbation (d) Large Perturbation

Figure 22: The effect of perturbing the input segmentations on the
contours found by our optimization. Only upon large perturbation
to the inputs do the output contours become non-viable.

tion 4) on the border between the nose and face. We apply three dif-
ferent levels of perturbation to the initial segmentation. Figure 22
visualizes the results. The resulting contours are all semantically
valid unless the perturbation is severe, which causes them to cross
into the eyes.

8.4 Compatibility Optimization and Mesh Deformation

We quantitatively evaluated the improvement of the component’s
quality resulting from the compatibility-based optimization (Sec-
tion 4). We ran our full approach and measured the extent of the
deformation for compatibility (Section 5) using the ARAP mesh
energy. Next, we re-ran the approach with the compatibility-based
optimization omitted and compared the energies. See Figure 25 for
the results. The extent of our improvement ranges from over 100%
for the faces to about 17% for the humanoids. Figure 23 visualizes
how the distortion is distributed over the mesh.

8.5 Performance

We tested a single-threaded implementation of our approach on a
2.4 GHz laptop. The optimization for compatible edge loops in
Section 4 is the longest step. It took less than 4 minutes in all our
experiments. The constrained optimization problems for finding the
initial common edge loops in Section 5.1 and for finding an RBF
surface in Section 6 can be solved in a few seconds using standard
solvers. The time required to minimize the total mesh deformation
energy in Section 5.2 scales linearly with the total number of ver-
tices in the input set. In all our experiments it took less than 30
seconds to converge. In total, the approach took about 8 minutes
for the 13 input model animals and 6 minutes for the 5 input model
faces. Please refer to the supplementary material for detailed per-



(a) Without Compatibility (b) With Compatibility
Figure 23: Visualizing the distortion caused by satisfying compo-
nent interchangeability. Red indicates distortion level. Compatibil-
ity optimization reduces the distortion considerably.

formance data.

8.6 Fabrication

Our results were fabricated on an Objet Connex 3D printer in solid
material. The printer possessed sufficient precision to make the
components fit together smoothly, making most seams virtually un-
noticeable, although components with highly curved connections
will have more visible seams. We expect that fabricating the parts
with a higher precision technique, such as molding, should make
the seams less visible. Some parts of the fabricated components
were not covered by support material, which gave them a shinier
appearance than parts that were covered. This effect, which is visi-
ble in Figure 20, may interfere with the perception of seamlessness.
Components that lack any graspable protrusion and lie in concave
regions like the mouth and eyes are easier to extract with a small
flat-head screwdriver than by hand. Components involved in higher
order constraints, like the arms in the armchairs, require a greater
degree of precision from the printer for a perfectly seamless con-
nection. Since the printer lacks this precision, these components
often have more visible seams, though they still connect.

8.7 Limitations

Our approach deforms the input meshes to achieve part compatibil-
ity, but does not guarantee anything about the extent of the defor-
mation. In some cases the deformations introduced by our approach
may be semantically incorrect. The user interaction discussed in
Section 7.3 can mitigate these issues, but may be unable to resolve
cases where the components of the input meshes differ fundamen-
tally in their geometry. Figure 24(a-b) shows such a case. In a
few cases the diversity of our component geometry creates config-
urations where components interfere with one another, as shown
in Figure 24(c). We leave the problem of automatically deforming
the components to eliminate these cases for future work. The rel-
ative alignment between components when they are connected is
determined by the local coordinate frame for the contours, whose
computation is described in Section 4. Since the automatic local
frame computation may not always produce a satisfactory compo-
nent alignment, future work could allow the user to adjust the frame
if desired.

When dealing with man-made shapes, our approach could bene-
fit from using parametrized shape templates [Schulz et al. 2014]
instead of simple triangle meshes. To incorporate shape templates,
we would replace the mesh based deformation energy in Section 5.2
with one that incorporated template parameters.

Finally, our approach only considers geometric, not physical prop-
erties of the assembled objects. For example, it is possible to con-
struct a humanoid (Section 8.1) which does not stand stably on its
legs. Combining our geometric problem with the physical problems
posed by works like [Preost et al. 2013] offers an interesting direc-
tion for future work: guaranteeing that any object assembled from
a set of components possesses some physical properties.

(a) (b)

(c)
Figure 24: (a-b) A failure case due to severe differences in the
initial component geometry. (a) The default deformation produced
by our approach distorts the dog’s mouth. (b) Adjusting the weights
to preserve the dog’s mouth creates undesirable deformations in
the other shapes. (c) Interference between components prevents
physical assembly.

Figure 25: The improvement in shape preservation from
compatibility-based optimization.

9 Summary and Future Work

We have presented a computational approach to convert 3D models
into interchangeable components that form shapes with a coher-
ent appearance. Our algorithm chooses how to partition the mod-
els into components and how to deform the components for inter-
changeability. Both steps consider C0 and C1 continuity between
the components in order to minimize the visual impact of compo-
nent junctions. This process would be extremely tedious to per-
form manually for complex shapes or large numbers of shapes. Our
optimization-based approach generates components which produce
shapes of greater complexity and diversity than those of commer-
cial products while naturally incorporating user guidance to pre-
serve desired features in the components.

The increasing availability of high quality 3D models and cheap 3D
printing services has motivated a recent trend in Computer Graph-
ics Research, which focuses on allowing casual users to create cus-
tomized fabricable objects that possess a desirable property from
initial meshes that lacked this property. Some example proper-
ties include stability [Preost et al. 2013], spinnability [Bächer et al.



Figure 26: Humanoids assembled by our components.

2014], and aerodynamic characteristics [Umetani et al. 2014]. Our
work contributes to this trend, with the property being the inter-
changeability of the components.

We see several directions from which our paper can lead to future
work. The components generated by the current approach cor-
respond to semantically meaningful regions of the input models.
While the semantic constraint makes shape assembly more intu-
itive, it also limits the geometric diversity of the components. An
interesting problem would be to synthesize a set of components
from scratch that can approximate the geometry of a set of mod-
els, without any semantic considerations on the components. The
resulting components would form a kind of 3D tangram puzzle.

The present approach dealt with objects which are reconfigurable
between a set of states specified by appearance. Specifying the
states by a higher level goal such as functionality or a physical prop-
erty while relaxing constraints on the appearance is an intriguing
problem for future work.
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