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Figure 1: Left: Initial layout where furniture pieces are placed arbitrarily. Middle and right: Two synthesized furniture arrangements
optimized to satisfy ergonomic criteria, such as unobstructed accessibility and visibility, required of a realistic furniture configuration.

Abstract

We present a system that automatically synthesizes indoor scenes
realistically populated by a variety of furniture objects.Given ex-
amples of sensibly furnished indoor scenes, our system extracts, in
advance, hierarchical and spatial relationships for various furniture
objects, encoding them into priors associated with ergonomic fac-
tors, such as visibility and accessibility, which are assembled into a
cost function whose optimization yields realistic furniture arrange-
ments. To deal with the prohibitively large search space, the cost
function is optimized by simulated annealing using a Metropolis-
Hastings state search step. We demonstrate that our system can
synthesize multiple realistic furniture arrangements and, through a
perceptual study, investigate whether there is a significant differ-
ence in the perceived functionality of the automatically synthesized
results relative to furniture arrangements produced by human de-
signers.
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1 Introduction

Whereas in recent years numerous publications have appeared
demonstrating the automatic modeling of building exteriors and fa-
cades, the automatic generation of realistic indoor configurations
has not yet received the attention that it deserves. With thegrow-
ing popularity of social virtual worlds and massively-multiplayer

online games that feature large quantities of realistic environmental
content, automated procedural methods for synthesizing indoor en-
vironments are needed, as it would be too tedious and impractical to
model every indoor scene manually. Currently, such indoor model-
ing is usually simplified or even ignored, which severely limits the
realism of many virtual environments.

A realistic indoor scene is typically populated by several different
kinds of furniture objects, but only a few of the many possible spa-
tial arrangements of these objects are functional and livable. For
example, the front of a television or computer screen shouldnot
be blocked, since it is supposed to be visible. Furthermore,most of
the objects in the scene should be accessible to human habitants. On
the other hand, one object is often placed on top of another object,
such as a vase on a table, so there exists a hierarchical relationship
among the two objects if we regard the carrier object as the parent
and the supported object as its child.

While the aesthetic and creative process of interior designwould
best be done by professional interior designers, our goal isto cre-
ate software capable of automatically generating furniture arrange-
ments for complex indoor scenes that are optimized to respect im-
portant ergonomic factors. This technique would be useful in multi-
player online games and other graphics applications requiring fully
automatic interior design with a high degree of realism. Thesystem
that we present in this paper achieves this goal in two stages:

First, our system extracts spatial relationships on the placement of
furniture pieces from user-supplied exemplars of furnished indoor
scenes. This step is done only once, in advance. The acquisition of
examples and subsequent extraction of spatial relationship should
not be costly, given that many virtual worlds feature user-created
content and collaborative design. A scene is then initialized with
furniture pieces randomly placed at arbitrary positions and orien-
tations. Here, the furniture placement is almost always unlivable,
with objects that are wrongly-located (e.g., a bookshelf isplaced
at the center of the room rather than against a wall) or wrongly-
oriented (e.g., a television screen is facing the wall), andfurniture
is usually blocking pathways between doors.

Given an arbitrary initial arrangement, such as the one shown in
Figure1(left), optimizing a furniture arrangement subject to human
ergonomics is not an easy task, since the search space can be pro-
hibitively large. To address this issue, in the second stage, the initial
layout will be adjusted iteratively by minimizing a cost function that
accounts for factors, such as human-accessibility, visibility, pair-
wise object relationships, and so forth, wherein the spatial relation-
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Figure 2: Examples of furniture arrangement. Left: An unsatis-
factory spatial arrangement resulting from the neglect of human er-
gonomics considerations; note that the furniture objects are packed
together near the upper-left corner and are blocking the door.
Right: A satisfactory arrangement with realistically positioned fur-
niture objects that are accessible, do not obstruct the door, and in-
clude a television that is readily viewable from a well-positioned
chair.

ships extracted from the exemplars are encoded as prior costterms.
We demonstrate that the overall cost function can be optimized by
simulated annealing with a Metropolis-Hastings state-search step.
From the random initial arrangement in Figure1, the optimization
produces the two synthesized example scenes shown in the figure.

We furthermore perform a perceptual study that adopts a subjective
forced-choice approach to investigate whether people havea pref-
erence based on perceived functionality between our synthesized
results and arrangements produced by human designers.

2 Related Work

We will first discuss the scarce existing research on generating func-
tional furniture arrangements and then review other relevant work
ranging from floor-plan generation and interior design metrics to
applications requiring (rapid) generation of livable indoor scenes,
such as virtual worlds and artificial life.

2.1 Furniture Arrangement

Previous systems that generate furniture arrangements
[Kjølaas 2000; Akazawa et al. 2005; Germer and Schwarz 2009;
Larive et al. 2004; Sanchez et al. 2003] require manual control or
intervention, or do not adequately consider ergonomic factors,
which makes them susceptible to generating uninhabitable ar-
rangements. Figure2 shows an unsatisfactory arrangement where
ergonomic factors are neglected in the interior design.

To generate a furniture layout, Kjølaas [2000] represents a given
room as a nested hierarchy of rectangular templates, which are
swapped by eight predetermined mutation functions. Empty boxes
are placed in front of doors and windows to represent free space.
However, the approach is limited to rectangular rooms, and each
template plus the set of corresponding parameters must be carefully
designed.

Akazawa et al. [2005] use a semantic database to explicitly store
furniture spatial relationships in order to synthesize newarrange-
ments. Our furniture representation is similar in its use offurniture
object interrelationships with parent-child hierarchieswhere each
object is represented as a bounding box. Unlike our approach, how-
ever, their inter-object contact constraints must be manually speci-
fied in the database.

Germer and Schwarz [2009] take a similar approach, regarding each
furniture object as an agent seeking to attach itself to a parent ob-
ject. Since the parent-child relationships of each object must be

manually defined, however, this task will become prohibitive as the
number of objects grows. Furthermore, as ergonomic factorssuch
as good accessibility and visibility are disregarded, unrealistic and
uninhabitable configurations suffering undesired physical or visual
blocking are unavoidable.

2.2 Floor Plan Generation

Relevant floor plans can be generated before planning the layout of
furniture pieces. Recently, Merrell et al. [2010] proposed a data-
driven method to generate residential building layouts. Intheir
work, 120 examples of architectural programs are used to train a
Bayesian network that captures the relationships among different
rooms. Given certain user requirements as priors, the Bayesian net-
work can then be used to generate a floor plan, which is iteratively
modified to incorporate desirable human factors. The resultis a
synthesized floor plan for a residential building.

We also note the work of Chun and Lai [1997], which encapsu-
lates architectural design knowledge into an expert system. The
system modules can be used to evaluate floor plan and furniture ar-
rangement according to government regulations and interior design
guidelines, providing suggestions for changes.

2.3 Interior Design Metrics

Although interior design involves creative solutions thatcan be
fairly subjective, a set of quantifiable design criteria haslong
been accepted in the industry. Specifically, such criteria deter-
mine whether the design is functional and suitable for humanin-
habitants. Panero and Zelnick [1979] conducted a detailed study
on human dimensions and ergonomics, by carefully defining met-
rics such as height, width, reachable-range, and visibility, which
are believed to be conducive to functional and comfortable de-
signs. For example, a television should maintain a certain distance
from the normal viewing area (e.g., a sofa) depending on the di-
mensions of its screen. Viewing from an oblique angle should
also be avoided for the sake of the viewer’s comfort. Note that
[Ching and Binggeli 2005] describes these human factors as the
“prime determinants” of interior design, emphasizing thatwhile av-
erage measurements should be used, flexibility should be exercised
to satisfy specific user needs. In optimization terms, such guidelines
can be interpreted as soft constraints. In [Mitton and Nystuen 2007;
Ching and Binggeli 2005], the importance of accessibility in furni-
ture placement is noted, which is a common consideration in dec-
orating rooms with different purposes. Ching and Binggeli [2005]
illustrate how pathways connecting doors may affect human move-
ment and interior furnishing. In general, a pathway connecting
doors should be a short path that facilitates movement whileleav-
ing considerable floor areas for furnishing. The width of a pathway
should depend on the habitant’s body width, with possible amend-
ments when designing homes for the physically-challenged to allow
wheelchair movement.

2.4 Related Applications

The realistic synthesis of spatial arrangements of objectscan
tremendously facilitate virtual world modeling. For example,
[Shao and Terzopoulos 2007] demonstrated a large-scale virtual
model of a train station populated by numerous autonomous pedes-
trians. The mobile human agents can perceive the environmental
objects they encounter and respond to them appropriately. An au-
tomatic means for properly placing various different kindsof envi-
ronmental content in the scene would be useful in this context.

Collaborative design spaces have been used to assist objectmod-
eling [Talton et al. 2009], and they are commonly used in con-



Figure 3: Overview of our approach.

Figure 4: Left: A television, its bounding box, and six surfaces;
Right: A candelabrum on a table; the table is a first-tier object and
the candelabrum is a second-tier object.

structing virtual worlds, such as Second-Life and many massively-
multiplayer online games. The first stage of our approach entails
the extraction of spatial and hierarchical relationships from posi-
tive furnished examples, which is a more practical approachcom-
pared to the manual specification of such relationships, especially
for scenes where there are hundreds of different kinds of objects.

There are numerous efforts in the modeling and synthesis of cities
and building exteriors. In [Chen et al. 2008; Müller et al. 2006;
Parish and Müller 2001] a procedural modeling approach was used
to realistically synthesize streets, buildings, and cities, by which
parameters such as height and age can be specified to guide the
synthesis. The result is a realistic city model populated with build-
ings. Other efforts [Müller et al. 2007; Xiao et al. 2008] also em-
ploy image-based approaches to model facades. Such techniques
can be adopted in Google Earth, Bing Maps, and other applications
that enable users to zoom into street views and navigate the exteri-
ors of texture-mapped buildings in 3D.

3 Furniture Relationship Extraction

Figure3 provides an overview of our approach, which is divided
into two stages: (1) the extraction of spatial, hierarchical, and pair-
wise relationships from positive examples and (2) the synthesis of
novel furniture arrangements through optimization. This section
describes the first stage.

(a) (b) (c)

Figure 5: An example objecti. (a) Lengthdi measures the dis-
tance of the object centerpi to its nearest wall. Angleθi is the
orientation of the object relative to the nearest wall (or the tangent
plane if the wall is nonplanar). Lengthbi gives the diagonal of the
bounding box. (b) The object has 4 accessible spaces centered at
ai1, ai2, ai3, andai4 respectively. (c) A viewing frustum associated
with the object is represented by 3 rectangles centered atvi1, vi2,
vi3. Quantitiesadik andvdik denote the corresponding diagonal
lengths of the rectangles.

3.1 Object Representation

Optimizing furniture arrangement into a realistic and functional in-
door configuration involves considerable complexity, taking into
account various interacting factors, such as pairwise furniture re-
lationships, spatial relationships with respect to the room, and other
human factors. An effective representation that captures the neces-
sary spatial relationships is needed.

Bounding surfaces: Similarly to [Germer and Schwarz 2009;
Kjølaas 2000], each object in the scene is represented by a set of
bounding surfaces (it can be a simple rectangular bounding box or a
convex hull to deal with more complex spatial arrangements). Fig-
ure4 shows an example object (television) represented by a bound-
ing box whose six surfaces are labeled 1 to 6. Apart from the top
and bottom surfaces, we search for the “back” surface of every ob-
ject, which is the surface closest to any wall. Other surfaces are
labeled as “non-back” surfaces. The back surface is used to define
a reference plane for assigning other attributes.

Center and orientation: Figure5(a) shows the key attributes of an
object—center and orientation, denoted by(pi, θi), wherepi de-
notes the(x, y) coordinates andθi is the angle relative to the near-
est wall (defined as the angle between the nearest wall and theback
surface). An optimized furniture arrangement{(pi, θi)} involving
all objectsi is one that minimizes our cost function defined in the
next section.



Accessible space: For each surface of the object, we assign a corre-
sponding accessible space (see Figure5(b)). We defineaik to be the
center coordinates of accessible spacek of objecti. The diagonal
of the region is measured byadik, which is used to measure how
deep other objects can penetrate into the space during optimization.
The size of the accessible space is set from available examples or
given as input related to the size of a human body. If the spaceis
very close to the wall in all the examples, the correspondingsurface
need not be accessible; otherwise, we set it to be the dimension of
an average-sized adult if such a measurement is not given.

Viewing frustum: For some objects, such as the television and
painting, the frontal surface must be visible. We assign a viewing
frustum to this particular surface. Given an objecti, its viewing
frustum is approximated by a series of rectangles with center coor-
dinatesvik, wherek is the rectangle index.vdik is the diagonal of
the rectangle, which is useful in defining the penetration cost akin
to that for the accessible space. Figure5(c) provides an example.

Other attributes: Other attributes are involved in the optimization
process. Referring again to Figure5(a), the distance frompi to its
nearest wall is defined asdi; the diagonal frompi to the corner of
the bounding box is defined asbi (the current implementation is a
rectangle). We also record thez-positionzi of the object.

Note that to simplify the optimization process, the translation step
considers the(x, y)-space only. In other words, an object’sz-
position is fixed as thez-position of the surface of its first-tier par-
ent. Nevertheless, thez-position can still change in the swapping
step, when a second-tier object changes its first-tier parent and is
placed on a different surface. Possible collisions in thez-dimension
will still be considered when evaluating accessibility andvisibility
costs. For example, an overlap between a chair and a bed in the
(x, y) space is penalized, while that between a wall clock and a bed
is not, as the former involves collision in thez-dimension but the
latter does not. Thus, the chair tends to move away from the bed in
the(x, y) space, whereas the wall clock does not.

3.2 Learning Prior Relationships

Given the above object representation, the following furniture rela-
tionships are extracted automatically from positive inputexamples.

Spatial relationships: The key prior relationships are the distance
of an object to its nearest wall̄di and its relative orientation to the
wall θ̄i. They are respectively estimated as the clustered means of
input examples, where we can assign one of the clustered means as
d̄i andθ̄i respectively for objecti during optimization. The number
of clusters can be preset or estimated by [Grunwald 2007].

Hierarchical relationships: Given two objectsA andB, object
A is defined as the parent ofB (andB as the child ofA) if A is
supportingB by a certain surface. Figure4 shows a candelabrum
on top of a table. The table is hence the parent of the candelabrum,
and the candelabrum is the child of the table.

Suppose an example room populated by furniture objects is given.
With the room itself regarded as the root, all objects directly sup-
ported by the floor or the wall are defined as “first-tier objects” (e.g.
bed, table, clock on the wall). All objects supported by a surface
of a first-tier object (e.g., a vase on top of a cupboard) are defined
as “second-tier objects”. A room configuration is thus represented
by a hierarchy of relationships. For simplicity, our optimization
considers only first-tiers and second-tiers, which should cover most
objects of interest.

Pairwise relationships: Certain objects, such as a television and a
sofa or a dining table and chairs, interact with each other inpairs
subject to pairwise orientation and distance constraints.Each pair-
wise relationship can be set by clicking the corresponding objects

in the UI, after which the mean relative distance and angle are ex-
tracted from the examples for use as pairwise constraints. Table1
summarizes the pairwise relationships used for each scene in our
experiments in Section5.

4 Furniture Arrangement Optimization

Given the spatial relationships extracted as described above, our
goal is to integrate this information into an optimization framework
with a properly defined cost function quantifying the quality of the
furniture arrangement. Given an arbitrary room layout populated by
furniture objects, the synthesized arrangement should be useful for
virtual environment modeling in games and movies, interiordesign
software, and other applications.

The search space of our problem is highly complex as objects are
interdependent in the optimization process. The furniturepositions
and orientations depend on numerous factors, such as whether the
object should be visible or accessible. It is very difficult to have a
global optimization scheme or a closed-form solution that yields a
unique optimum.

To tackle this problem, we resort to stochastic optimization meth-
ods, specifically, simulated annealing [Kirkpatrick 1984] with
a Metropolis-Hastings state-search step [Metropolis et al. 1953;
Hastings 1970] to search for a good approximation to the global
optimum. Note, however, that given a room, a set of furnitureob-
jects, and the prior spatial and hierarchical relationships, numerous
acceptably-good configurations will be possible. This is the ratio-
nale for finding a good approximation in a reasonably short time,
rather than searching exhaustively over the complex searchspace in
order to find the global optimum of the cost function. The evalua-
tion of interior decoration results can be subjective; hence, we will
perform a perceptual study to validate the realism of our synthe-
sized results.

4.1 Simulated Annealing

Simulated annealing is a computational imitation of the (physi-
cal) annealing process, which gradually lowers the temperature
of a heat bath that controls the thermal dynamics of a solid in
order to bring it into a low-energy equilibrium state. Theoreti-
cally, the algorithm is guaranteed to reach the global minimum
at a logarithmic rate given a sufficiently slow cooling schedule
[Geman and Geman 1984]. Using such a slow cooling schedule
is impractical, however. Nevertheless, it has been widely used to
find quasioptimal configurations in circuit design, operations, and
many scientific problems. As in the work on floor-plan generation
[Merrell et al. 2010], we found that simulated annealing with the
simple Metropolis criterion [Chib and Greenberg 1995] is effective
in our problem of optimizing configurations in the space of possi-
ble furniture arrangements. For additional details about the simu-
lated annealing method, refer to [Schneider and Kirkpatrick 2006;
Liu 2008; Aarts and Korst 1989].

By analogy, the furniture objects in our application are regarded as
the atoms of a metal being annealed—they are initially “heated up”
to allow flexible rearrangement, and refine their configuration as the
temperature gradually decreases to zero. At each temperature, the
Metropolis criterion is used to determine the transition probability.
It employs a Boltzmann-like objective function

f(φ) = e−βC(φ), (1)

where the state of the systemφ = {(pi, θi)|i = 1, . . . , n} repre-
sents a furniture configuration comprising the positionspi and ori-
entationsθi of each of then furniture objects,C is the cost (energy)
function, which will be defined in Section4.3, andβ is inversely



Initialization 1000 iterations 5000 iterations 15000 iterations 25000 iterations

Figure 6: Furniture arrangement optimization from a random initial configuration (left). As the optimization process proceeds,the furniture
configuration is iteratively updated until it achieves an optimized final arrangementφ∗ in 25,000 iterations (right).

Figure 7: Left: A pathway connecting doors. Right: A pairwise
constraint between the television and the sofa.

proportional to the temperature, increasing over the iterations as
the system anneals from a high temperature to a low temperature.
At each iteration, a new furniture configurationφ′, or “move”, is
proposed, and it is accepted with probability

α(φ′|φ) = min

[

f(φ′)

f(φ)
, 1

]

(2)

= min
[

exp(β(C(φ)−C(φ′)), 1
]

. (3)

Note that the Metropolis criterion can accept moves that increase
the cost, which enables the method to avoid becoming stuck atlocal
minima.

Figure 6 depicts an example furniture optimization process. We
typically initialize the furniture objects in random positions and ori-
entations, a configuration that typically has very high energy. The
supplemental videos include animations of the optimization pro-
cess.

4.2 Proposed Moves

To explore the space of possible arrangements effectively,the pro-
posed moveφ → φ′ involves both local adjustment, which modi-
fies the current arrangement, and a global reconfiguration step that
swaps objects, thereby altering the arrangement significantly.

Translation and Rotation: The basic move of the optimization
modifies the position of an object and its orientation. For the pur-
poses of the furniture arrangement problem, 2D translationand ro-
tation transformations suffice to configure objects into practicable
arrangements, since in most cases furniture objects stand upright
on the floor due to gravity. In addition, we found in practice that
performing translation and rotation separately gives a more stable
optimization. In mathematical terms, an objecti or a subset of ob-
jects is selected and updated with the move(pi, θi) → (pi+δp, θi)
or (pi, θi) → (pi, θi + δθ), whereδp ∼ [N (0, σ2

p) N (0, σ2
p)]

T

andδθ ∼ N (0, σ2
θ), with N (µ, σ2) = (2πσ2)−1/2e−(x−µ)2/2σ2

a normal (Gaussian) distribution of meanµ and varianceσ2. The
variancesσ2

p andσ2
θ , which determine the average magnitude of the

moves, are proportional to the temperature.

Swapping Objects: To enable a more rapid exploration of the
arrangement space and avoid becoming stuck in local minima,
a move involving the swapping objects in the existing arrange-
ment may be proposed. Two objects of the same tier are selected
at random and their positions and orientations are interchanged:
(pi, θi) ↔ (pj , θj) for objectsi andj. Object swapping usually
changes the cost significantly, thereby leading to considerable rear-
rangement of the configuration.

Moving Pathway Control Points: Given two doors, multiple path-
ways are possible. By moving the control points of the pathway,
which is represented as a cubic Bezier curve, the pathway can
change its course to avoid colliding with furniture objects. As
shown in Figure7, the free space of a pathway is represented by
a series of rectangles along the curve. Thus, pathways can also be
regarded as “furniture objects” whose control points may bemod-
ified, and a move can be defined as the translation of a pathway
control point in a certain direction.

With the aforementioned moves, given a floor-plan and a fixed num-
ber of furniture objects that define the solution space, the configura-
tion of a furniture object(pi, θi) has a positive probability to move
to any other configuration(p′i, θ

′

i). Given the annealing schedule,
the solution space is explored more extensively with largermoves
early in the optimization, and the furniture configuration is more
finely tuned with smaller moves towards the end.

4.3 Cost Function

The goal of the optimization process is to minimize a cost func-
tion that characterizes realistic, functional furniture arrangements.
Although it is often difficult to quantify the “realism” or “function-
ality” of a furniture arrangement, the following basic criteria should
not be violated.

Accessibility: A furniture object must be accessible in order to be
functional [Mitton and Nystuen 2007; Ching and Binggeli 2005].
In Section3.1, we defined for every face of an object an accessi-
ble space determined from prior examples and the dimensionsof
the human body (see Figure5). To favor accessibility, the cost in-
creases whenever any object moves into the accessible spaceof an-
other object. Suppose objecti overlaps with the accessible spacek
of objectj, the accessibility cost is defined as

Ca(φ) =
∑

i

∑

j

∑

k

max

[

0, 1−
‖pi − ajk‖

bi + adjk

]

. (4)

Note that we simplify the move by dropping the optimization of ori-
entationθi, only measuring the relative distance. Our experiments
revealed that this simplification suffices to ensure accessibility and
more easily prompts the overlapping object to move away.

Visibility: Some objects, such as a television or a painting, im-
pose strict requirements on the visibility of their frontalsurfaces,
since their fundamental functionality is compromised if their fronts
are blocked by another object. For every such object that must be



(a) Initial random arrangement (b) Arrangement including all ergonomic terms (c) No accessibility term (wa = 0)

(d) No visibility term (wv = 0) (e) No pairwise distance term (wd
pair = 0) (f) No pairwise orientation term (wθ

pair = 0)

(g) No pathway term (wpath = 0) (h) No prior distance term (wd
pr = 0) (i) No prior orientation term (wθ

pr = 0)

Figure 8: The effect on the automatic arrangement (b) of the furniturein (a) resulting from the omission of individual cost terms:Disregarding
human ergonomics results in unrealistic synthesized arrangements that that are not livable in several ways; e.g., (c) the furniture objects are
colliding, (d) a potted plant is blocking the television andthe armchair, (e) the work-chair is too far from the desk, (f)the armchair is facing
away from the television, (g) the desk and work-chair are blocking the door, (h) furniture objects are too far from the wall, (i) objects are
randomly oriented.

visible, we associate with it a viewing frustum (see Figure5). Sim-
ilar to the accessibility constraint, whenever another object moves
into some object’s viewing frustum, the cost increases in order to
discourage the move. As discussed in Section3.1, for an objectj
with a viewing frustum we approximate the frustum by a seriesof
rectangles whose center coordinates are defined asvjk. If object i
overlaps with the visibility approximation rectanglek of objectj,
the visibility cost is defined as

Cv(φ) =
∑

i

∑

j

∑

k

max

[

0, 1−
‖pi − vjk‖

bi + vdjk

]

. (5)

Note that it is similar to the accessibility costCa, where the acces-
sible space of objectj is replaced by the viewing frustum.

Pathway Connecting Doors: Another important criterion involves
pathways between doors [Ching and Binggeli 2005]. The place-
ment of furniture objects such that they block doors should obvi-
ously be inhibited. However, a room configuration with circuitous
and narrow pathways should also be avoided. To strike a balance,
we assume that a pathway in a typical living environment should be
smooth, and we define its locus by a cubic Bezier curve, where the
free space of the pathway is approximated by a series of rectangu-
lar objects, as shown in Figure7. Thus, the movement of furniture
objects into the rectangles is penalized. Apart from movingfurni-

ture objects, the pathway itself can be adjusted by translating the
control points of the Bezier curve. Because a pathway shouldbe
free of obstacles and thus visible, the pathway costCpath can be de-
fined similarly asCv defined in Eq. (5), and applied to the series of
rectangles along the pathway.

Prior: The prior cost controls the similarity between the new con-
figuration and configurations seen in the examples. According to
Section3.2, we extract for each furniture object its prior distance
and orientation to the nearest wall(d̄i, θ̄i). Alternatively, for any
new furniture object that is absent from the positive examples, the
user can manually assign the prior. Given a new room layout, the
current furniture arrangement will be compared with the prior by

Cd
pr(φ) =

∑

i

||di − d̄i|| (6)

Cθ
pr(φ) =

∑

i

||θi − θ̄i||, (7)

wheredi andθi can be computed from the currentpi; i.e., finding
the distance and relative angle to the nearest wall.

Pairwise Constraint: The pairwise constraint is applied between
two furniture objects with a specific pairwise relationship; e.g., the
television should be facing the sofa as shown in Figure7, and a bed-



Number of Pairwise Relationships Number of Total Time
Objects Iterations (sec)

Living Room 20 television & sofa 20000 22
Bedroom 24 television & armchair, desk & work chair 20000 48
Restaurant 54 chair & dish set, chair & table 25000 219
Resort 30 easel & stool, drum & chair, guitar & chair, couch & tea table 42000 126
Factory 51 work desk & chair, supervisor’s desk & chair 42000 262
Flower Shop 64 none 22000 376
Gallery 35 chair & chair 18000 88

Table 1: Computation times are measured on a 3.33GHz Intel Xeon PC. Spatial and hierarchical relationships are extracted automatically
from positive examples. Each pairwise relationship can be set by clicking the corresponding objects in the UI, whereupon the mean relative
distance and angle are extracted from the examples for use aspairwise constraints.

side table should be close to a bed. It thus encodes the natural affin-
ity of certain furniture objects in the optimized result. Wedefine
the pairwise constraintCd

pair(φ) andCθ
pair(φ) by simply replacing the

distance and orientation to the wall in the prior cost as defined by
Eqs. (6) and (7), with the desired distance and orientation between
the pair of objects.

Given the above costs, we define the overall cost function as

C(φ) = waCa(φ) + wvCv(φ) + wpathCpath(φ)

+wd
prC

d
pr(φ) + wθ

prC
θ
pr(φ)

+wd
pairC

d
pair(φ) + wθ

pairC
θ
pair(φ). (8)

The w coefficients determine the relative weighting between the
cost terms; in practice, we setwa = 0.1, wv = 0.01, wpath = 0.1,
wd

pr = wd
pair = [1.0, 5.0], andwθ

pr = wθ
pair = 10.0. The effect of

omitting individual terms is depicted in Figure8.

The optimization formulation can be readily extended to second-
tier objects—optimization is performed to move second-tier objects
on the supporting surfaces provided by their first-tier counterparts
in the same way that furniture objects move over the floor space of
a room, which is regarded as the root in the hierarchy. However,
second-tier objects will attach to their first-tier parentsif they are
not already attached when the optimization begins.

5 Results

Figure9 shows typical input exemplars that serve in extracting fur-
niture relationships. For each scene, we build five exemplars which
cover the most common types of furniture objects. The furniture
objects used in the input exemplars for relationship extraction may
differ in appearance from those used in the synthesis, although they
are of the same type.

To demonstrate the efficacy of our optimization approach, wetested
it on seven different scenes, theLiving RoomandBedroomexam-
ples shown in earlier figures, plus the five additional scenes, Fac-
tory, Flower Shop, Gallery, Resort, andRestaurant, shown in Fig-
ure 10. Table1 tabulates the computational complexity, running
time, number of iterations, and the pairwise relationshipsused in
each scene. Note that the respective positions and orientations of
the windows, doors, and ceiling fans are fixed and not updateddur-
ing the optimization unless otherwise stated.

For each scene, we synthesized three different furniture arrange-
ments; the same view of each synthesized arrangement is shown
in Figure10 for comparison. Two additional views of each syn-
thesized arrangement are included in the perceptual study,which
will be detailed in the next section. All the images for the input
exemplars and synthesized arrangements can be found in the sup-
plementary materials supporting this paper.

TheFactory scene in the figure shows the efficacy of the pairwise
constraint. By modifying the weights of the pairwise distance and
orientation terms, different groupings of work desks and chairs are
obtained. The accessibility and visibility constraints acting together
prevent the door and poster from being blocked. TheFlower Shop
provides a striking example of the effect of the pathways constraint,
which maintains a clear path between the doors despite the dense
coverage of the remainder of the room by flowers. For this scene,
we change the position of the main door in each synthesis to il-
lustrate different path generation solutions. The accessibility con-
straint also prevents the cashier from being blocked. We modeled
the Gallery scene based on an image of the Yale University Art
Gallery. The scene consists of a non-rectangular room supported
by numerous pillars. Our synthesis result suggests a new interior
arrangement for the gallery, where optimizing visibility and ac-
cessibility helps avoid obstruction of the pictures and information
counter. TheResortprovides another example of a non-rectangular
room. Using pairwise constraints between the easel and the stool,
our system automatically generated a area dedicated to painting.
We choose a different mean position for the sofa in Synthesis2 so
that the optimized location is farther from the wall. TheRestaurant
example illustrates the significance of the pairwise relationship on
both first-tier and second-tier objects. With the use of a concentric
spatial relationship between the chairs and table extracted from the
exemplars, different numbers of chairs are correctly oriented and
evenly distributed around their respective tables and eachdish-set
is near and properly oriented to its corresponding chair.

6 Perceptual Study

We performed a perceptual study to evaluate the realism and func-
tionality of the furniture arrangements synthesized by ourinterior
design system. Our null hypothesisH0 was that users perceive
no significant differences in the functionality of the synthesized ar-
rangements relative to those produced by a human designer given
the same rooms and sets of furniture objects. The alternative hy-
pothesisH1 was that users did perceive significant differences.
Our experiment was conducted using a subjective, two-alternative,
forced-choice preference approach patterned after the onereported
in [Jimenez et al. 2009].

6.1 Participants

25 volunteer participants were recruited who were unaware of
the purpose of the perceptual study. This number of participants
was comparable with similar studies in which 16 users were re-
cruited [Jagnow et al. 2008; Jimenez et al. 2009]. The participants
included 18 males and 7 females whose ages ranged from 20 to 60.
All the subjects reported normal or corrected-to-normal vision with
no color-blindness and reported that they are familiar withthe in-
door scenes to be tested in the study. 14 subjects reported that they
did not have any expertise in interior design.



Living Room Bedroom Factory Flower Shop Gallery Resort Restaurant

Figure 9: Typical input examples for different scenes.

Synthesis 1 Synthesis 2 Synthesis 3

Figure 10: Selected views of our synthesized results. Top to bottom: Factory, Flower Shop, Gallery, Resort, Restaurant.



Figure 11: Synthesis results obtained without enforcing a selected
constraint. Left: No distance constraint; e.g., in the Living Room,
the couch is not placed against the wall and, in the Factory, some
work-chairs are placed far from their respective work desks. Right:
No orientation constraint; e.g., in the Living Room the television is
oriented at an awkward angle against the wall and, in the Factory,
some work-chairs are oriented arbitrarily.

6.2 Data

The synthesis results shown in Figure10 were compared against
furniture arrangements designed by humans. To assess the signif-
icance of priors and pairwise constraints, we produced two addi-
tional synthesis results by respectively settingwd

pr = wd
pair = 0

andwθ
pr = wθ

pair = 0. Figure11 shows selected views of the two
additional synthesized examples of the five scenes. Note that the
positions of objects mounted on the walls, such as paintingsand
posters, are fixed in the examples.

6.3 Procedure

The study was conducted in a manner similar to the traditional prac-
tice adopted in industry, where interior decorators present their de-
sign alternatives to customers and request their preference. It in-
volved static 2D image viewing rather than 3D scene navigation so
as to eliminate differences due to varying degrees of skill among the
participants in using navigation software. The viewing of video was
avoided because, as our preliminary experiments showed, repeated

Figure 12: A screenshot used in our perceptual study. Each par-
ticipant was shown 70 pairs comprising a synthesized arrangement
and an arrangement created by a human designer given the same
room and set of furniture objects. Left: Overhead and 2 different
views of a synthesized furniture arrangement. Right: Correspond-
ing views of a human-designed furniture arrangement.

video viewing easily causes fatigue.

Figure12shows a screenshot used in our perceptual study for pair-
wise comparison. The left and right color plates respectively show
three views of a furniture arrangement, one synthesized by our sys-
tem and the other created by a human designer. Each participant
viewed a total of 70 trials (5 paired comparisons× 7 scenarios× 2
trials).

Participants were encouraged to ask any questions prior to the
study. After completing a consent form and questionnaire, they
were given a sheet indicating the task description:

“This test is about selecting a color plate from a pair of
color plates, and there are 70 pairs in total. Each plate
shows three views of a furniture arrangement. You will
be shown the plates side-by-side with a grey image dis-
played between each evaluation.

Your task in each evaluation is to select the arrangement
in which you would prefer to live, stay, work, visit, etc.,
depending on the primary function of the room, by click-
ing on the color plate. You can view the test pair for an
unlimited amount of time, but we suggest that you spend
around 15 seconds on each set before making your se-
lection.”

The color plates were presented to each participant in a different
random order. Counterbalancing was used to avoid any order bias—
each paired comparison was assessed twice by each participant,
where in half of the trials the synthesized arrangement is displayed
as the left plate and as the right plate in the other half.

6.4 Outcome and Analysis

The primary goal of the experiment was to validate the quality of
the furniture arrangements synthesized by our system relative to
that of arrangements designed by humans. If human-designedar-
rangements are not clear winners over the synthetic ones, then our
system may be considered successful.

The collected preference outcomes were analyzed to deter-
mine if any statistically significant trend exists. To this end,
we first adopted the Chi-square nonparametric analysis tech-
nique. A one-sample Chi-square includes only one dimension,
such as is the case in our perceptual study. The obtained
(AE/A1,AE/A2,AE/A3,AE/A4,AE/A5) frequencies were com-
pared to an expected 25/25 (50 for each comparison) result toas-
certain whether this difference is significant. The Chi-square values
were computed and then tested for significance. Table2 tabulates
the survey results. Overall, they indicate that the furniture arrange-



AE/A1 AE/A2 AE/A3 AE/A4 AE/A5

Scene χ2-value p-value χ2-value p-value χ2-value p-value χ2-value p-value χ2-value p-value
Living Room 1.210 0.271 0.010 0.920 0.010 0.920 5.290 0.021 10.89 0.001
Bedroom 0.810 0.368 7.290 0.007 0.010 0.920 4.410 0.036 20.09 0.000
Factory 0.490 0.484 1.690 0.194 0.810 0.368 13.69 0.000 20.25 0.000
Flower Shop 0.090 0.764 9.610 0.002 6.250 0.012 0.090 0.764 10.89 0.001
Gallery 0.250 0.617 3.610 0.057 0.090 0.764 1.690 0.194 3.610 0.057
Resort 0.010 0.920 2.890 0.089 0.090 0.764 9.610 0.002 12.25 0.000
Restaurant 3.610 0.057 0.250 0.617 1.690 0.194 8.410 0.004 2.890 0.089

Table 2: Chi-square analysis (degrees of freedom = 1, level of significance = 0.05). AE, A1, A2, A3 are, respectively, the example
arrangement and synthesis results 1, 2, and 3 in Figure9 and Figure10. A4 andA5 are the respective synthesis results without distance and
orientation considerations. Values shown in boldface indicate significant differences.

AE/A1 AE/A2 AE/A3 AE/A4 AE/A5

Scene odds odds odds odds odds
Living Room (1.377) 5.506 5.506 0.016 0.000
Bedroom (2.135) 0.002 5.506 0.042 0.000
Factory 3.050 (0.818) (2.135) 0.000 0.000
Flower Shop 4.894 0.000 0.005 4.894 0.000
Gallery 4.020 0.102 4.894 (0.818) 0.102
Resort 5.506 0.223 4.894 0.000 0.000
Restaurant 0.102 4.020 (0.818) 0.000 0.223

Table 3: Odds on the null hypothesisH0 over the alternative hy-
pothesisH1. Values shown in boldface favorH0, indicating no sig-
nificant difference; values shown in parentheses are inconclusive;
other values favorH1.

ments created by humans arenotclearly preferred over the arrange-
mentsA1, A2, andA3, when all the cost terms participate in the
optimization that synthesizes the furniture arrangements. For the
AE/A1, AE /A2 andAE/A3 pairs, among the 21 synthesized ar-
rangements, only 3 showed a significant difference (p < 0.05) inas-
much as most of the participants were able to identify the human-
designed arrangement in these cases.

Second, we adopted a Bayesian analysis [Gallistel 2009;
Rouder et al. 2009] to determine whether the number of partic-
ipants who selected the synthesized layout was what would be
expected by chance, or if there was a preference pattern. Foreach
scene, we assumed that the participant had a probabilityP of
picking the human-designed arrangement, and that the results of
different trials of the same scene were independent of each other.
Based on these assumptions, we used a binomial distributionto
model the results, where the only parameter wasP . ThenH0 has
P = 0.5 andH1 hasP = [0, 1]. We computed the oddsO on
H0 over H1. According to [Rouder et al. 2009], O > 3 shows
evidence favoringH0 whereasO < 1/3 shows evidence favoring
H1, while other odds values are inconclusive.

Table3 tabulates the odds computed. For theAE/A1, AE/A2, and
AE/A3 pairs among the 21 synthesis results, 10 favorH0 indicating
the lack of a significant perceived difference between the furniture
arrangements synthesized by our system and the human-designed
arrangements, 6 favorH1 indicating a significant difference, and 5
are inconclusive.

Orientation vs distance: Most users chose the human-designed
arrangement when the distance or orientation constraint was inhib-
ited, and it was easier for users to detect the difference when we
inhibited the orientation term than when we inhibited the distance
term. Omitting orientation constraints yields bad resultsin practice,
which suggests that a greater weight can be applied in penalizing
orientation deviation during optimization.

7 Discussion and Future Work

Although our framework espouses optimization as a means of syn-
thesizing realistic furniture arrangements, it provides users the flex-

ibility to control furniture placement that respects furniture func-
tionality and interior design aesthetics. For instance, the pair-
wise constraint promotes the even distribution of chairs around
a circular table in theRestaurantexample, which is a typical
case of radial balance or symmetry [Ching and Binggeli 2005;
Malnar and Vodvarka 1992]. Our framework also demonstrates its
effectiveness in a “tight fit” scenario, where many functional group-
ings of furniture (e.g., work desks and chairs) are possibleas in the
Factory example, as well as in a “loose fit” scenario, where the
placement is more flexible and furniture types are more diverse,
as in theResortexample. The framework is also flexible enough
to cater to specific needs related to human factors, which maybe
readily encoded into the accessibility and pathway terms inorder
to generate livable furniture arrangements. Note that we make the
implicit assumption that the perimeter of a room is long enough
to accommodate all the furniture objects that ought to be placed
against walls. Violating this assumption may lead to local subop-
tima or failure cases, where in the resulting layout some furniture
objects that should be positioned against walls may be placed at a
distance from the nearest wall that is already occupied by another
object.

Given our automatic tool for synthesizing furniture arrangements
plus existing methods for synthesizing floor-plans, buildings, and
cities, we can potentially create and model virtual worlds much
faster and with much less human effort. The resulting interior en-
richment would enhance the level-of-detail and, therefore, the real-
ism of large-scale buildings in virtual worlds, which are becoming
increasingly ubiquitous in motion pictures and interactive games.

The future extension of our framework will focus on functional
issues, including consideration of interior lighting design and
the acoustic qualities of a synthesized furniture configuration, as
well as on subjective, aesthetic issues, among them the selec-
tion of furniture styles and colors consistent with design concepts
such as balance, harmony, and emphasis [Ching and Binggeli 2005;
Malnar and Vodvarka 1992]. Furthermore, pairwise relationships
between objects in exemplars should be analyzed in a more sophis-
ticated manner from the perspective of unsupervised machine learn-
ing.

8 Conclusion

We have introduced a framework for the automatic synthesis of fur-
niture layouts, avoiding manual or semi-automated interior design
approaches that are impractical in graphics applications requiring
full automation. We believe that our work is the first to consider
in a comprehensive manner human factors, among them accessibil-
ity, visibility, pathway constraints, and so forth. We havedemon-
strated the effectiveness of our automated interior designapproach
in generating arrangements for various scenarios, and our results
have been deemed by human observers to be perceptually validin
functionality compared to arrangements generated by humande-
signers.
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M ÜLLER, P., WONKA , P., HAEGLER, S., ULMER, A., AND
VAN GOOL, L. 2006. Procedural modeling of buildings.ACM
Trans. Graph. 25, 3, 614–623.
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L. 2008. Image-based façade modeling.ACM Trans. Graph. 27,
5, 1–10.


