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Designing Human-Robot Coexistence Space
Jixuan Zhi1, Lap-Fai Yu1 and Jyh-Ming Lien1

Abstract—When the human-robot interactions become ubiq-
uitous, the environment surrounding these interactions will have
significant impact on the safety and comfort of the human and
the effectiveness and efficiency of the robot. Although most robots
are designed to work in the spaces created for humans, many
environments, such as living rooms and offices, can be and should
be redesigned to enhance and improve human-robot collaboration
and interactions. This work uses autonomous wheelchair as an
example and investigates the computational design in the human-
robot coexistence spaces. Given the room size and the objects
O in the room, the proposed framework computes the optimal
layouts of O that satisfy both human preferences and navigation
constraints of the wheelchair. The key enabling technique is a
motion planner that can efficiently evaluate hundreds of similar
motion planning problems. Our implementation shows that the
proposed framework can produce a design around three to five
minutes on average comparing to 10 to 20 minutes without the
proposed motion planner. Our results also show that the proposed
method produces reasonable designs even for tight spaces and
for users with different preferences.

Index Terms—Motion and Path Planning, Human-Aware Mo-
tion Planning, Nonholonomic Motion Planning

I. INTRODUCTION

MORE than ever, robots are designed and developed to
work with and around humans. Inevitably, humans and

robots in their day-to-day life are going to share a common
space. While most robots, in particular humanoid robots, are
designed to work in the existing environments designed for
human activities, we envision that the shared space are likely
to evolve in the near future to better accommodate and enhance
the ever increasing human-robot interaction and collaboration.
During the decades after personal vehicles were invented, we
redesigned the roads and streets to adjust to the vehicle size,
speed, traffic volume and, more importantly, the behaviors of
the drivers in these cars. Similarly, as robots are moved from
industrial and laboratory settings into our personal spaces, the
spaces must also adopt to the robots to increase the humans’
safety and comfort and the robot’s efficiency.

This paper pioneers the computational design of human-
robot coexistence space. We formulate the design problem
as an optimization problem subject to constraints from both
human preferences encoded in an action-object relation graph
[1] and motion limitations of the robot (e.g., nonholonomic
constraint). This simple but flexible framework allows us to
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Fig. 1. The figure on the left is a worse layout design comparing to the design
in the right figure produced by the proposed framework that considers human
preferences and ensures that all the objects are accessible by the wheelchair
robot entering from the door.

create multiple design recommendations within a few minutes.
The key technical challenge is to overcome the bottleneck
resulted from the repeated calls to the motion planner during
the optimization process. From our study, motion planning
takes more than 95% of the computation time.

In this paper, we focus on designing spaces, such as
living rooms and offices, that maximize the accessibility
of a wheelchair robot and a person with mobile disability.
Fig. 1 shows the designs with and without the consideration
of wheelchair motion. Although we will use self-driving
wheelchair throughout this paper, it should be noted that the
proposed framework can be easily adjusted and extended to
consider different settings and scenarios.

Main contributions. This paper presents the first com-
putational method considering the optimization of the space
shared by human and robot. The paper also contributes the
first nonholonomic motion planner [2] that adopts the solutions
obtained from earlier motion planning problems to solve more
problems in similar but new workspaces. We envision that, as
in many creative processes, the users of the proposed software
framework are likely to consider different preferences, objects,
room sizes and types, etc, and therefore likely to require
multiple optimizations before they can settle on a design.
Consequently, an ultra-fast motion planner, such as the one
proposed in this paper, is much needed to make this creative
process more practical. More specifically, the proposed new
planner can efficiently plan wheelchair motions in hundreds
to thousands similar environments in just a few minutes.

II. RELATED WORK

There has been extensive work on computational design
of living spaces. However, to our best knowledge, there is
little effort, if not none, on designing human-robot coexistence
spaces. The other major technical challenge in designing a
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Fig. 2. An overview of the proposed design method. Given the room size and objects, with user-defined Action-Object relation graph, our approach generates
scenes and paths that satisfy the human preferences and wheelchair motion constraints.

human-robot coexistence space is an ultra fast planner that
solves motion planning problems in many similar environ-
ments. In this section, we will review prior works in both
areas.

A. Computational Design of Space Planning
Computational design of spaces is usually formulated as an

optimization problem. We group these works in rule-based and
activity-based methods. In this work, we use both rule-based
and activity-based representations for human preferences and
robot motions, respectively.

1) Rule-based methods: The first set of methods use user-
defined rules to express the preferences of the object place-
ment; for example, the sofa must be against a particular wall
and the TV set must face the sofa. For example, Yu et al. [3]
proposed to iteratively change positions and orientations of
objects to satisfy these design rules. Based on [3], Li et al. [4]
generated virtual indoor scenarios used for wheelchair training.
These rules can also be learned from a handful of examples
[5]. More recently, various neural-network methods [6] have
been proposed to encode these rules in the latent space from
a vast number of examples and have shown to create more
complex scenes.

2) Activity-based methods: These methods synthesize in-
door scenes with human-centric inference based on the fact
that human activities have a strong effect on arrangement
of objects. For example, Fisher et al. [7] learned an activity
model from a database of 3D models and scenes and, based on
the activity model, new scenes are generated. Several activity
models have been proposed, such as activity map [8], action
graph [9], activity-associated object relation graphs [1]. In this
paper, an activity model is used to infer the how the wheelchair
robot may move around a room.

B. Motion Planning in Similar Environments
Motion planning methods that utilize previous experiences

to solve new problems can be categorized into space-based
methods and trajectory-based methods.

1) Space based methods: Space-based methods learn to
plan in similar environments from a representation of the
workspace. For example, Lien and Lu [10] proposed to con-
struct and store local roadmaps around obstacles, then retrieve
and merge those local roadmaps into a global roadmap when
given a similar new environment. Similarly, Experience Graph
[11] represents the connectivity of a workspace. Chamzas et al.
[12] used local experiences to global motion planning. They
sample and store local maps by local primitives, and then
synthesize a global map based on the local maps.

Beyond graph representations, Gaussian Mixture Models
have been used to represent collision possibility in high
dimensional configuration space [13]. Ichter et al. [14] pro-
posed to sample configurations from the learned latent space
conditioned on the new planning problem.

2) Trajectory based methods: Trajectory based methods
learn to plan in similar environments from recorded trajecto-
ries. For example, Berenson et al. [15] introduced a framework
that consists of two parts: one for planning-from-scratch, and
the other for retrieving and repairing paths stored in the
database. Saha et al. [16] introduced new machine learning-
based algorithms to record a sequence of robot action around
obstacles that are reused in more complex environments.
Similar to the space-based methods, Gaussian Mixture Models
have also been used to estimate the likelihood of reusing
existing trajectories and generate new trajectories in the new
environments [17].

Although it is developed with a different objective in
mind, trajectory prediction [18] often reuses and generalizes
computations obtained from the previous situations.

III. OPTIMIZATION FRAMEWORK OF HR-SPACE DESIGN

This section introduces the building blocks used in the
proposed design framework. Fig. 2 illustrates the proposed
framework that uses a motion planner and human preferences
to evaluate the space layouts. The framework also uses an
action-object relation graph [1], [9] that encodes the interac-
tions between the human in the wheelchair and the objects in
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the room. These interactions will determine the importance
of a given trajectory and how much the trajectory should
influence the design of the room layout. To simplify our
discussion, we will use wheelchair to refer to the human in the
wheelchair robot for the rest of this paper when the context is
clear.

A. Action-Object Relation Graph
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Fig. 3. The action object relation
graph. Edge thickness represents the
transition probability between two
objects.

In a given room, objects in-
side the room play an impor-
tant role in defining the ac-
tivities of humans and robots.
These activities in turn de-
fine how humans and robots
may move around the room.
Therefore it is natural to pro-
duce design recommendations
based on these object-derived
activities. To accomplish this,
we use action-object relation
graph (AO graph) [1].

As shown Figure 3, an AO graph is similar to the state dia-
gram of Markov chain. More specifically, an AO graph reveals
the activity-associated objects relation. This is a weighted
directed graph G = (V,E), the nodes V represent the objects.
The edges point from one node to another node or a node to
itself, and the edge weight is the transition probability from
one object to another object or staying still at the current ob-
ject. In this work, the weight measures how likely a wheelchair
may move from one object to another. Realistic weights can
be estimated from sensors observing human activities [1], [9].

Given an AO graph, we determine the likelihood of a
sequence of objects that the wheelchair may visit. That is, from
the AO graph, we can determine M most possible sequences
that encode different visiting orders of objects in a room.
Throughout this paper, M = 10 is used. In practice, if M is too
small, only a few paths are evaluated, and, if M is too large,
the computation is costly. Given a sequence s = {oi...oj}
of objects in the room and their corresponding transition
probabilities {Probi} from the AO graph, the likelihood of
the path is defined as L(s) = ΠiProbi. For each of these
M sequences, we use the wheelchair motion planner (detailed
in the next sections) to determine if a path exists for visiting
all objects in the sequence. Section III-D describes how the
information gathered by the motion planner combined with the
user-defined preferences are used to evaluate a room layout.

B. Baseline Wheelchair Motion Planning

We now sketch the baseline motion planner that models a
wheelchair as a nonholonomic car [2] and uses a variant of
Rapidly-exploring Random Trees (RRT) [19] that expands its
search using the Reed-Shepp (RS) curves [20]. In Section IV,
this baseline planner will be replaced using a significantly
more efficient planner designed for solving many copies of
similar problems.

The baseline motion planner works as follows: in every step,
it first generates a uniformly sampled configuration (x, y, θ)

with a biased sampling strategy which has 80% probability of
selecting the goal configuration and 20% probability of picking
the random configuration. The planner then finds the closest
node in the search tree. Instead of Euclidean distance, the
travel distance defined over RS curves is used to determine the
closest node. For computational efficiency, it is not desirable
to calculate the RS curves from the sample to every node in
the tree. Instead, the planner approximates this by selecting k
closest nodes using the weighted Euclidean distance metric and
then finding the nearest node with the minimum RS-curve dis-
tance among those k nodes. The weighted Euclidean distance
metric linearly combines the translation in Cartesian space and
the change of the orientation between two configurations.

The planner then connects the sample to the closest node
using the shortest RS curve between them. In our implementa-
tion, if the target configuration is the goal, the entire curve up
to the first invalid configuration is added; Otherwise, we add
at most n = 5 steps of the RS curve to the tree [21] to ensure
the space efficiently. Finally, the planner checks whether the
newly generated edge is free from collision with the furniture
and walls. Only collision-free edges and vertices are added
to the tree. The process repeats until the tree reaches the goal.

C. Touring the Room

Given a sequence of objects {oi...oj} that the wheelchair
should visit, we now determine a tour that allows the robot
to stop by each object. To this end, we should determine
a sequence of configurations, one for each object, so the
path connecting consecutive configurations in the sequence
is collision free. Therefore, these configurations should not
be randomly created. In fact, they should be sampled around
the objects and should be oriented so that the person sitting
in the wheelchair is facing the object. To achieve this, we
uniformly sample N configurations around each object, and
each configuration is oriented toward the reference point of
the object. The value N is proportional to the perimeter of
the object and the size of the wheelchair. An example of the
sampled configurations around the bed is shown in Fig. 4.

Fig. 4. Left: The uniform sampled configurations shown as the red spheres
around the bed. The blue arrow represents the orientation of the sampled
configurations. Right: The uniform sampled points around the bed and TV. A
valid path in blue between bed and TV can be computed between the sampled
points.

Given the sampled configurations around the objects
{oi...oj} in a given sequence, such as from the door to TV,
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dresser and bed in Fig. 4(left), we wish to find a collision-
free path that visits all objects in that sequence and satisfies
the nonholonomic constraint. We solve this problem using a
branch-and-bound approach. To connect objects oi and oj , all
pairs of configurations, one from oi and one from oj , are sorted
based on their RS-curve lengths. Starting from the closest pair,
the pairs are iteratively evaluated by the motion planner until
a valid path is found. Fig. 4(right) shows an example of such
a path between the bed and the TV. Once a path πij between
oi and oj is determined, we move on to the next pair in the
sequence, e.g., oj and ok. If we cannot find a path connecting
oj and ok by extending πij , we backtrack to oi and oj and
find another valid (but this time longer) path between oi and
oj . This process repeats until a collision-free path visiting
{oi...oj} in the given order is found.

Recall that, in each layout design optimization iteration,
the method described in this section must be applied to all
M = 10 sequences obtained from the AO graph. As detailed
in the next section, these M tours will be used to evaluate the
accessibility of the design.

D. Evaluating a Layout Design

The quality of a design is encoded as the weighted sum of
two cost terms. One cost term describes the accessibility of
the room, and the other represents how the placement of the
objects reflects the human preferences. More specifically, the
cost of a layout design is expressed as Ctotal:

Ctotal = (
∑
P

L(sP )CP)wT
p + CIw

T
I , (1)

where P is a path, CP and CI are vectors of path and interior
design costs, respectively, and wP and wI are vectors of
weights. While wP is partially derived from the provided
AO graph, wI is defined based human preferences. Because
our optimization frame work considers multiple paths (tours)
generated from the object sequences in the AO graph, the
accessibility cost is defined as the sum of all path costs
weighted by the likelihood L(sP ), where sP is a sequence
of objects visited by the path P . Lower Ctotal indicates a
better design. Details of the cost terms are described below.

1) Path Cost: The path cost CP = [Cl
P , C

r
P , C

c
P ] evaluates

the length, accumulated rotation, and clearance of the path,
respectively. A shorter and wide path with fewer turns is
considered to be better path than a longer, narrower path with
many turns. Note that if the path cannot be found, the path
cost is a large number based on the room size. Given a path
with N waypoints and the i-th waypoint has position pi and
orientation ri, the path cost terms are defined as follows.

Path Length Cost Cl
P . The path length is the sum of

the distances between consecutive waypoints along the path.
Suppose there is a forward path with N waypoints, then the
path length is defined as:

Cl
P =

N−1∑
i=1

||pi+1 − pi|| . (2)

Path Rotation Cost Cr
P . Each waypoint has its orientation

information, the path rotation could be computed as the sum

of difference of orientation between nearby waypoints. Since
we have N waypoints.

Cr
P =

N−1∑
i=1

||ri+1 − ri|| . (3)

Path Clearance Cost Cc
P . The path clearance cost deter-

mines how narrow or wide a path is. It is computed as the
mean width of the waypoints.

Cc
P =

1

N

N∑
i=1

(||pi − qi||+||pi − wi||) . (4)

where qi and wi is the position of object which is closest to
the waypoint position pi on the left and right side.

Path Cost Weight wP. Generally speaking, the weights wP

determine how the path costs can be combined. We define the
weights wP = α[wl

P , w
r
P , w

c
P ], where α is a scaling factor

of the user defined parameters wl
P , wr

P , wc
P that express the

importance of the path length, rotation and clearance in the
optimization process. If there is no path length cost term
(wl

P = 0), path rotation cost term (wr
P = 0), or path clearance

cost term (wc
P = 0), the generated path can be too long, has

too many turns or passes through areas that are too narrow.
The value of α is determined based on the Action-Object

Relation Graph (AO graph). Recall that, from Section III-A,
we obtained multiple object sequences from the AO graph.
To define α, let us first define the scale factor αi of oi,
which is determined by the likelihood of each sequence and
the frequency of oi appeared in the sequences containing oi.
More specifically, for each object oi in a sequence s, we count
the object occurrences as follows: if oi is the start or end of
s, oi is counted once, otherwise oi is counted twice as oi
will appear in two path segments in s. Then the frequency
freqs(oi) of oi can be determined by the counts divided by
total counts in the sequence s. In addition, each sequence
s also has a likelihood L(s) defined from the AO Graph.
Combined with the likelihood L(s) of all sequences containing
oi, the scaling factor αi of oi is

∑
s∈S L(s)freqs(oi), where

S is all sequences containing oi. Finally, we have α =
∑

i αi.
2) Interior design cost: This cost estimates how the object

placement reflects human preferences. Therefore, we consider
the spatial relationship between objects, including the spatial
relationship between each object and its nearest wall. Certain
objects, such as a TV and a couch, have a pairwise relationship
including their mutual distance and orientation. Suppose that
there is a pairwise relation set S including all pairs of objects.

Pairwise Distance Cost Cd
I . Every object in the room has

a determined distance to its nearest wall and may also have
a distance preference from other objects. This distance cost
determines the spatial relationships between objects. The target
distance can be set by user. The cost is defined as:

Cd
I =

∑
∀i,j∈S

(||oi − oj ||−di,j)2 , (5)

where oi and oj are the positions of objects i and j, and di,j
is the user-defined target distance.

Pairwise Rotation Cost Cr
I . Another spatial relationship

between objects is pairwise orientation. Each object has a
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relative orientation to its nearest wall and may have a desired
relative orientation to other objects. For example, one might
require the TV and the couch to face each other. The rotation
cost is then defined as:

Cr
I =

∑
∀i,j∈S

(||θi − θj ||−θi,j)2 (6)

where θi and θj are the orientations of objects i and j, and
θi,j is the user-defined target relative angle.

Interior Design Cost Weight wI. We define the weights
wI = α[wd

I , w
r
I ], where wd

I , wr
I that express the importance of

the pairwise distance and pairwise rotation in the optimization
process. If there is no pairwise distance cost term (wd

I = 0), the
object in the room is too far or too close from the wall or other
objects; if there is no pairwise rotation cost term(wr

I = 0), the
object may face away from wall or other objects.

E. Layout Optimization

We now are ready to describe how the proposed method
creates a realistic layout by minimizing the costs. To this
end, we apply a simulated annealing method [22] with a
Metropolis-Hasting algorithm [23], [24]. Let us first define
a Boltzmann-like objective function for state (P, I):

f(P, I) = exp(−1

t
Ctotal(P, I)) , (7)

where P is the set of paths touring the room, I is the object
layout, t is the temperature parameter, which decreases over
the iterations.

In each iteration, our method chooses a move to change the
present configuration (P, I) to a new configuration (P ′, I ′).
There are two types of moves: (1) change the position of the
object, and (2) change the orientation of the object. Once the
layout I ′ is updated, we proceed to find new paths P ′. With
annealing schedule, the optimizer explores the solution space
with large moves in the beginning, and tunes the configuration
with small moves in the end.

The new proposed configuration (P ′, I ′) is accepted with a
probability based on Metropolis criterion:

Prob(P ′, I ′|P, I) = min(1,
f(P ′, I ′)

f(P, I)
) . (8)

In the beginning of each iteration, the optimizer may aggres-
sively accepts any move, even a bad one, when the temperature
is high. As the temperature decreases, the optimizer is less
likely to accept a bad move.

IV. PLANNING MOTION IN SIMILAR ENVIRONMENTS

A major challenge in developing the computational frame-
work proposed in the previous section is the motion planning,
which, as we will see in the experimental section, takes
more than 95% of the total computation. Although there exist
planners that exploit similarities among problems, they usually
focus on a handful, instead of hundreds, of similar problems,
and do not consider nonholonomic constraints. This section
presents several new techniques that maximize computation
reuse, thus the overall motion planning cost is significantly
reduced.

A. Decompose C-Space using Reed-Shepp Words

Fig. 5. Approximate partition
the configuration space into dif-
ferent regions by RS words.
Samples with the same color are
a region with the shared word.
There are 48 regions in total.

We propose to decompose the
configuration space based on the
shortest Reed-Shepp (RS) curves
with the wheelchair starting at
the center of the room. Each re-
gion in the decomposition is a
set of points that share the same
RS words. Similar decomposition
has been studied using analytic
methods [25], [26]. However, to
the best of our knowledge, these
methods remained in theory and
the only practical implementation
is only available for Dubin’s car
[27].

We propose to approximate the decomposition via adaptive
sampling. We first create K = 10000 configurations sampled
uniformly from the configuration space of an empty room that
has the size double that of the original room. The K is chosen
based on the room size. For each sample s, we compute the
shortest RS-curve and its associated RS-word from the center
of the room. We then incrementally add more samples. For
each additional sample s (also sampled uniformly from the
C-space), we first find the closest sample s′. If s and s′ share
identical RS word, then s is discarded. Otherwise, s is added
to the samples. This process is repeated until 100 consecutive
failures are encountered. Fig. 5 shows the resulting partition
of the C-space into 48 regions with the rotational radius of
the wheelchair equals to three meters. We call this partition
RS-decomposition.

When a query configuration q is given, the RS-curve of
q can then be estimated using the RS-word of q’s nearest
point in the RS-decomposition. With a proper data structure,
such as a KD tree, this can be done efficiently by avoiding
the evaluation of all 48 cases in determining the shortest
RS curve. However, because RS-decomposition is only an
approximation, the RS-word obtained via the closest sample
might be incorrect or even invalid. To avoid this, the baseline
RRT planner is modified so that the random configurations that
pull the tree into unexplored regions are only sampled from
the existing configurations in the RS-decomposition. Note that
this modification does not change the behavior of RRT because
these pre-defined samples remain uniformly sampled without
the prior knowledge of the environment. We see about 40%
reduction in computation time without noticeable differences
in the found paths.

B. Path Reuse

While RS-decomposition allows us to precompute and reuse
RS-curves, it is agnostic to the changes of the designed layout.
It is also important to know that, the difficulty of the motion
planning problems changes over time as the optimization
progresses. That is, when the optimization is just started,
the layout tends to be chaotic and changes dramatically, and
the problem of finding a tour visiting objects in the scene
is difficult. As the optimization converges, the layout design
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stabilizes, and finding a tour becomes easier. In this section,
we present ways to utilize this observation and further speed
up the motion planner both within an optimization iteration
and between iterations.

Reusing paths within the optimization iteration. In
each iteration, multiple sequences of objects are evaluated.
These sequences share many common trajectories. Therefore,
we reuse these trajectories among the sequences whenever
it is possible. To achieve this, we maintain a database of
trajectories, each of which is indexed by the pair of objects
and their corresponding samples that the trajectory connects.
Note that some trajectories may become invalid due to the
displacement of objects in the scene which may result in
collision or invalidate the associated RS curves. Once detected,
an invalid trajectory is removed from the database.

Reusing paths from the earlier optimization iterations.
As the optimization process converges, the similarity between
consecutive optimization iterations increases. This allows the
opportunity of reusing paths obtained from the earlier itera-
tions. When the motion planner needs to find a path between
these objects, it looks up the database built from the earlier
iterations and extracts a potential path for the new layout. The
path is then transformed to the new location and orientation.
If the transformed path is not feasible, the planner finds a
new path and updates the database. Note that there is a
time–memory trade-off of the proposed improvements. Saving
paths between object pairs in a database will yield O(n2)
memory. However, the price is worthwhile since we prefer
saving time than space.

C. RRT Reuse

Similar to the case of reusing the paths, as the optimization
converges, the changes to the layout decreases. Therefore, it
is in fact possible that we can reuse a large portion of the
tree. In particular, if the position of RRT root does not change
much, we can reuse the tree from the previous optimization
iteration. From our study shown in Pareto chart Fig. 6, the
number of RRT iterations needed to find a path successfully
is generally small. Consequently, we do not need many nodes
in the reused tree. Therefore, if the reused tree grows too large,
it may be more time consuming to expand the tree. In addition,
objects can be displaced in each iteration, and, if the tree is too
large, nodes in the tree can easily become invalid. Therefore,
we rebuild a new tree when the total number of tree node is
larger than a user-defined number. In all of our experiments,
30, as indicated in Fig. 6, is used.

V. EXPERIMENTS AND RESULT

In this section, we report and compare the computation
times needed to create a design using the baseline and pro-
posed motion planners. We further study the effects of room
size and the AO graph to the designs created by the proposed
method. We implemented our method on a MacBook Pro
laptop with 2.2GHz Inter Core i7 and 16 GB memory. The
proposed optimization framework and the motion planners are
implemented in C# in Unity. We demonstrate how our method
can be applied in three different room types: bedroom, office,

Fig. 6. Number of RRT iterations needed for finding a valid path.

and living room. For each environment, we extract 10 most
possible sequences from a given AO graph. The maximum
number of optimization iterations in our simulated annealing
is 700 for all experiments.

A. Time Comparison

Motion planning takes on average 96.06% of the total
computation time of the optimization framework. Naturally,
we first show that the the proposed motion planning method
based on the technique described in Sec. IV is significantly
faster than the baseline planner. Fig. 7 shows the average path
planning time (in minutes) in three different environments.
The data is collected from 10 runs for each environment.
As shown in the results, the proposed planner significantly
outperforms the baseline planner in all cases. The proposed
method reduces the planning time between 65% to 70%. Fig. 8
shows two recommended layout designs for each room type.
The trajectory shown for each design represents the tour of an
objects sequence that has the largest probability according to
the given AO graph.

The optimization process only ends when the layout and
path cost is less than the user-defined thresholds. Therefore the
proposed motion planner is more efficient and does not affect
the quality of the room design and path as the optimization
process converges at the same rate as before.
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Fig. 7. Path planning time using the baseline planner and the proposed
planner. The planning time is 96.06% of the total running times.

B. Optimal Design in a Small Room

We evaluate the proposed method in a smaller room with
the bedroom boundary length reduced by 20%, so the area of
the new room is 36% smaller. Fig. 9 shows two designs of the
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smaller bedroom. The layouts are similar to those of the larger
room. However, the average path finding time of the proposed
method in the small size room is 30% higher than that of the
original bedroom.

C. Optimal Design in L-shape Room

We further evaluate the proposed method in a room with
more complex boundary using an L-shape living room. Fig. 10
shows two designs generated for the L-shape living room. Both
layouts satisfy the layout and path requirements.

D. Designs with different AO graphs

Because our method considers accessibility in the scene
synthesis, different user activities (encoded in the AO graphs)
should affect the designs of the human-robot shared space.
Fig. 11 shows two layouts created from two different AO
graphs. For path cost weight, we set wP = αi[1, 1, 1], where
αi is AO-graph dependent and [1, 1, 1] indicates that path
length, rotation and clearance are equally important. These
two AO graphs differ in the transition probabilities of the
wheelchair moving (from other objects) to the office table and
round table. Because of these differences, recall the definition
of the path cost weight in Section III-D1, the scale factors
αi of the office table and round table consequently become
different in these two examples. The AO graph used in the
left figure of Fig. 11 results in a larger scaling factor thus a
larger path cost weight of the office table than the weight of
the round table. The AO graph used in the right figure results
in a smaller scaling factor. We observe that the objects with
larger weight are more likely to be placed in the area of the
room that is more accessible from the door.

E. Designs with different Human Preference

Besides the AO graphs, human preferences are also encoded
in the cost weights. To illustrate the effects of these weights in
the resulting designs, we select two opposite path cost weights
[0, 1, 0] and [1, 0, 0]. Fig. 12 shows two layouts from these two
sets of path cost weights. Fig. 12(left) uses weights [0, 1, 0]
which means we only care about path rotation and Fig. 12
(right) uses weights [1, 0, 0] which means we only care about
path length. Regardless the weights, the paths must cover door,
round table, office table, sculpture and bookcase. The results
show that path in the left design has longer length and fewer
turns, and path in the right design has shorter path length
and many turns. Those results reflect the provided human
preferences.

VI. CONCLUSION

This paper presented the first known optimization frame-
work for designing human-robot shared spaces by considering
human preferences and robot constraints. We also proposed
a novel nonholonomic motion planner that can efficiently
solve motion planning problems in many similar workspaces.
The experiments showed that our framework can generate
reasonable layout designs, and the proposed motion planner

Fig. 8. Two layout designs and a path covering three objects in each of the
bedroom (top), office (mid), and living room (bottom). In all three examples,
the wheelchair starts from the door.

Fig. 9. Two different layout designs for a smaller bedroom.

takes significantly less time than the baseline planner. The ex-
periments also showed that the method is consistent in creating
similar designs for more crowded spaces, and the differences
in the AO graphs can be reflected in the synthesized layouts.
One major limitation of our work is that the number and type
of objects in the room are small. As the number of objects
in the room increases, the number of possible sequences and
tours increases exponentially.
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Fig. 10. Two different layout designs for the L-shape living room.

Fig. 11. Two layout designs for the office with different AO graphs. Left: the
office table has a larger weight than the round table. Right: the round table
has a larger path cost weight than the office table.
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