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The Clutterpalette: An Interactive Tool for
Detailing Indoor Scenes
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Abstract—We introduce the Clutterpalette, an interactive tool for detailing indoor scenes with small-scale items. When the user points
to a location in the scene, the Clutterpalette suggests detail items for that location. In order to present appropriate suggestions, the
Clutterpalette is trained on a dataset of images of real-world scenes, annotated with support relations. Our experiments demonstrate
that the adaptive suggestions presented by the Clutterpalette increase modeling speed and enhance the realism of indoor scenes.

Index Terms—interactive 3D modeling, scene modeling, scene understanding, indoor scenes, modeling tools, suggestive user
interfaces
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1 INTRODUCTION

V ISUAL realism is one of the defining goals of computer
graphics. While realism is often approached in terms of

rendering fidelity, it is also a modeling problem [1]. Realism
calls for creating synthetic environments that display a
convincing level of detail, on par with typical real-world
scenes.

Consider the kitchens in Fig. 2. The contrast between the
real-world scenes and the synthetic ones is stark. Without
the odds and ends that populate real-world scenes, the syn-
thetic environments appear eerily barren, devoid of traces
of life. The lack of small-scale objects is characteristic of
synthetic environments and commonly undermines their
realism. As observed by Xu et al. [2], “computer graphics
scenes are often unrealistically simple or overly tidy.”

The difficulty of populating a scene with detail items
is due in part to the large number and variety of such
objects that can appear in a typical scene. A realistic in-
door environment can easily contain over a hundred detail
items—books, stationery, and computing equipment in an
office; dinnerware, cookware, and food items in a kitchen;
clothes, bedding, and decor in a bedroom. Searching for
each individual item becomes tedious at this scale. The mere
identification of items that could fit well at a particular place
in the scene becomes a chore when it must be repeated
hundreds of times.

To facilitate the enhancement of synthetic indoor scenes
with detail items, we propose the Clutterpalette, an inter-
active tool that helps modelers enrich their scenes. When
the modeler points to a location in the scene, the Clutter-
palette suggests appropriate items to detail that location.
The user thus retains control over the content of the scene,
but the laborious search for appropriate clutter objects is
automated. The Clutterpalette identifies appropriate clutter
items, which are presented to the user. A scene can thus be
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Fig. 1. A living-room before (top) and after (bottom) detailing using the
Clutterpalette.

rapidly populated by repeatedly picking a suggested object
from the Clutterpalette until a sufficient level of detail is
reached. Fig. 1 shows a living-room scene before and after
detailing using the Clutterpalette.

To suggest appropriate objects, the Clutterpalette must
be trained using data, since manually codifying the de-
pendencies between hundreds of types of clutter objects,
furniture objects, and scenes would be impractical. The need
for training data presents us with a circular dependency:
Since creating realistically detailed scenes using current
modeling tools is tedious and time-consuming, there are
few such scenes in the public domain. We overcome this
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Fig. 2. Real-world (left) and synthetic (right) kitchens. The images of real-world scenes were obtained by searching Flickr Creative Commons with
the keyword “kitchen”; the synthetic scenes were obtained by searching the Trimble 3D Warehouse with the same keyword. The synthetic scenes
appear comparatively barren.

difficulty by training the Clutterpalette on real-world im-
agery. Specifically, the Clutterpalette is trained on a dataset
of images of real-world indoor scenes, annotated with object
types and support relations. This yields a scalable training
pipeline that transfers the semantics of real-world scenes to
3D modeling.

We evaluate the utility of the Clutterpalette in a set of
experiments in which participants model different types of
indoor scenes and independent evaluators assess relative
scene realism. The experimental results demonstrate that
the suggestions presented by the Clutterpalette speed up
modeling time and enhance the realism of indoor scenes.

2 BACKGROUND

2.1 Set Dressing
The task of populating a scene with clutter objects is referred
to as set dressing in film making [3], which is carried out
by set dressers under the direction of a leadman, a set
decorator, a property master, and a production designer. Set
dressing is an important step that sets the tone and ensures
the authenticity of a film. Similarly, in the production of
computer-animated films and video games, professional
set dressers are hired to model and dress sets and props
for the virtual worlds in which filming or gameplay takes
place. The Clutterpalette facilitates and simplifies the digital
production process, by providing convenient and realistic
suggestions of clutter objects to “dress” the virtual scene.
Figure 3 illustrates the task of set dressing a virtual scene.

2.2 Related Work
The difficulty of modeling realistic indoor scenes has been
recognized in computer graphics for a long time. Early work
focused on assisted placement and arrangement of objects.
Bukowski and Séquin [4] developed a system for assisted
placement of furniture and other objects in indoor scenes.
The system helped align objects by associating them to each
other—keeping bookshelves against walls, for example, or
tables on floors. The associations between different types of

Fig. 3. Left: An input scene. Right: Snapshot of a portion of our clutter
object database. Set dressing involves the non-trivial task of selecting
proper clutter objects to detail a scene.

objects were specified manually. Xu et al. [2] introduced a
system that automatically placed a large number of objects
in an indoor scene. The system is guided by a set of
manually-specified constraints that describe relationships
between different types of objects. Following this line of
work, Merrell et al. [5] presented a system that assists
furniture arrangement in indoor scenes. The system relies on
manually-encoded interior design guidelines. Relationships
between furniture types are again specified manually. The
reliance on manual constraint specification limits the scala-
bility of these approaches. For example, in order to handle
a new scene type, such as a classroom or a hotel lobby, all
relevant relationships between all types of objects would
need to be specified in detail. In contrast, our Clutterpalette
pipeline is designed to deal with the numerous small and
diverse detail items that populate indoor scenes. As we
demonstrate, it is highly scalable.

Yu et al. [6] introduced an optimization-based approach
for furniture arrangement that is trained on data. For each
type of scene, five example scenes were manually con-
structed to illustrate relationships between furniture types.
This limits the scalability of the approach in dealing with
new scene types and with a large number of clutter objects.
Fisher and Hanrahan [7] described a context-aware search
engine for 3D models that is trained on data. Given an
incomplete indoor scene and a bounding box specified by
the user, the system retrieves objects that fit the scene and
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Fig. 4. The Clutterpalette framework.

the bounding box, based on pairwise relationships and
individual object descriptors extracted from the data. The
training data is assumed to consist of complete 3D scenes
and the system relies on fine-grained geometric properties
of and spatial relationships between objects in the dataset. In
our setting, this assumption is untenable due to the dearth of
realistically cluttered scenes in publicly available 3D virtual
scene repositories. For this reason, our Clutterpalette is
trained on annotated images of real-world scenes.

Fisher et al. [8] describe an approach to comparing
synthetic 3D scenes based on geometric properties of and
spatial relationships between objects in the scenes, which
also relies on the availability of a dataset of synthetic scenes
that demonstrate proper relationships between objects. By
contrast, our approach decouples the dataset of clutter
objects from the dataset of images that demonstrate rela-
tionships between objects. This allows our two datasets to
scale independently—additional clutter instances broaden
the range of objects available to the modeler and additional
training images broaden the system’s knowledge about ob-
ject relationships. Clutter instances and real-world training
images can be added independently.

Yeh et al. [9] describe an optimization approach that
procedurally arranges a large number of objects in a scene,
which relies on manually specified relationships between
objects. Fisher et al. [10] present an approach that synthe-
sizes object arrangements that are similar to given input ar-
rangements. Xu et al. [11] present a sketch-based modeling
system for indoor scenes. These approaches are not trained
on real-world data. Alternatively, Majerowicz et al. [12]
learn object arrangement from annotated images of real-
world shelves to automatically generate style-preserving
object arrangements for virtual shelves. Their focus is on
synthesizing object arrangements on shelves while ours is
on devising an interactive, suggestive modeling interface
for detailing general indoor scenes.

Unlike existing approaches, we train a general-purpose
model using an indoor scene dataset to learn clutter ob-
ject distributions as observed in real-world settings. The
indoor scene dataset contains real-world scene images pre-
categorized into different scene types. Each image is also

annotated with the labels of the supporter and clutter objects
as well as the support relations. This allows our model
to learn and reason about object distributions both in the
global (scene) and local (supporter) contexts, for use in
detailing complete virtual scenes. Our Clutterpalette tool
learns to suggest different objects for the same supporter
in different types of scenes. For example, while detailing
the same shelf, a pair of shoes is suggested in the context
of a bedroom, while a plate is suggested in the context
of a kitchen. Our model also learns different co-occurrence
probabilities according to the scene type. For example, while
the model finds it likely to put multiple laptops in an office,
it finds it much less likely to have more than one or two
laptops in a bedroom.

Our general-purpose model is capable of detailing any
supporter—e.g., floor, bed, table, shelves, wall, door—on
which clutter objects lie or to which clutter objects are
attached in the real world. We base our model on first
principles and train it with real-world probabilities. The
final formulas are simple and closed-form, yet they are
well-grounded, making them practical for building a novel
interactive modeling tool where real-time performance is
necessary. Compared to automatic synthesis approaches,
our interactive approach enables the artist to retain control
over the modeling process while detailing a scene to any de-
sired extent, greatly reducing the tedium of object selection
from a large database of clutter objects.

Our interface builds on the idea of suggestive interfaces
proposed by Igarashi and Hughes [13]. In such interfaces,
the authoring tool reasons about operations that the user is
likely to undertake and presents suggestions that anticipate
the user’s choices. The user can pick one of the suggestions
or disregard them all. In this way, content creation is made
faster and easier. Suggestive interfaces have been proposed
for use in various applications, including modeling individ-
ual 3D objects [14], [15], assigning textures to surfaces in
3D scenes [16], assigning materials to parts of 3D objects
[17], designing physically valid furniture [18], and designing
building layouts [19]. In our earlier work [20], we devel-
oped a data-driven suggestive interface for dressing virtual
characters. In the present paper, we develop a suggestive
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Fig. 5. Interaction with the Clutterpalette. Left: The user points to the
counter to add a clutter object. This prompts the Clutterpalette to sug-
gest objects appropriate for the location. Right: the scene after one of
the suggested objects is selected by the user and added to the scene.

interface for enhancing the level of detail of indoor scenes.

3 OVERVIEW

Fig. 4 shows an overview of the Clutterpalette framework.
The training input consists of an indoor scene dataset that
has been manually annotated with object types and support
relations. The Clutterpalette is trained in advance using
the object distribution statistics learned from this dataset.
Subsequently, during use, the Cluttterpalette is linked to
a 3D object database, from which highly probable clutter
objects are selected and suggested to the user. As the user
interactively details different parts of the scene, the Clut-
terpalette adaptively provides suggestions, taking into ac-
count the objects that have already been added by the user.
The interactive modeling process continues until the scene
has been detailed to the user’s satisfaction. The following
sections explain the interaction and the training processes.

4 INTERACTION

We assume that the user starts with a room in which
appropriate furniture has been arranged, say with any of the
existing approaches to furniture layout [2], [4], [5], [6]. The
user then enhances the scene using the Clutterpalette. When
the user points to a location in the scene, the Clutterpalette
suggests the types of objects that are most likely to appear
there. The likelihood computation is based on the type of
scene (kitchen, bedroom, office, etc.), the type of supporting
object (floor, wall, desk, bed, etc.), and the clutter items that
are already present on the supporter. This computation is
based on statistics extracted from a dataset of real-world
images of indoor scenes, which we will describe in the next
section.

The most likely clutter types for a given location are
presented in ranked order within a menu. For each clut-
ter type, a randomly chosen object of this type is shown
in situ, in the context of the scene, so that the user can
conveniently preview how the scene would appear if the
object were added. If the chosen object collides with existing
clutter objects, another object of the same type is sampled.
Fig. 5 depicts the interface. The user can quickly place the
presented object in the scene by double-clicking on it. To
see additional instances of the presented type (e.g., other

bottles, other jars, other cups, etc.), the user can click on
the corresponding object once, which brings up a secondary
panel that shows additional instances of the clicked object
type (in our experiments described in Section 7, the Clut-
terpalette presents about 5 object instances for each object
type). Again, the user can immediately place one of the
object instances in the scene by double-clicking on it. This
hierarchical selection scheme affords greater flexibility in
choosing a particular object instance of the suggested type;
for example, out of personal preference for object color or
style.

Throughout the modeling process, the user can also
freely reposition and delete objects, after which the new
scene setting will automatically be taken into account and
appropriate new suggestions will be presented by the Clut-
terpalette. The Clutterpalette interface is further demon-
strated in the accompanying video.

5 TRAINING DATA

The suggestive functionality of the Clutterpalette relies on
computing the likelihood of a given clutter type appearing
at the selected location. Section 6 describes the likelihood
computation more fully. The computation relies on condi-
tional probabilities that relate types and quantities of clutter
objects to each other and to the scene type as well as to
the type of supporting object on which the clutter resides.
These probabilities are estimated by extracting empirical
statistics from real-world observations of lived-in, cluttered,
indoor scenes. Each observation needs to provide only the
following information: The type of the scene (e.g., kitchen), a
list of observed supporting objects (e.g., floor, wall, counter),
and a list of clutter objects on each supporting object (e.g.,
bottle on counter, another bottle on counter, cup on counter,
clock on wall, garbage bin on floor).

The NYU Depth Dataset produced by Silberman et
al. [21] to provide data for training and evaluating scene un-
derstanding algorithms serves as our source of observations
about real-world scenes. This dataset contains 1449 RGBD
images of 464 indoor scenes from 3 cities. The scenes appear
in their natural, messy condition. They employed the Ama-
zon Mechanical Turk crowdsourcing Internet marketplace
to annotate individual objects in the images as well as the
support relationships between objects. We use the annotated
information to train our Clutterpalette.

Although the NYU Depth Dataset contains both color
and range images, the range data was not used in obtaining
the annotations—only the color images were provided to
Amazon Mechanical Turk. A dataset of similarly annotated
color images can thus be used to provide additional training
data for the Clutterpalette.

A sample image from the NYU Depth Dataset is shown
in Fig. 6. We trained the Clutterpalette on five scene types
from the dataset—bedrooms, kitchens, living-rooms, offices,
and classrooms. For each scene type, we identified the most
common clutter types (e.g., book, bottle, box, etc.). As shown
in Table 1, several dozen clutter types were identified for
each scene type. Some of the object types annotated in the
NYU Depth Dataset were not used due to a lack of available
3D models. For each clutter type that was used, we collected
4 or 5 object instances from the Trimble 3D Warehouse and
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Fig. 6. An image from the NYU Depth Dataset [21] with some of the
annotated support relations indicated.

from other online sources of free 3D models. In total, our
3D object database contains 176 clutter object types and 786
object instances.

6 SUGGESTION GENERATION

When the user points to a location in the scene, the Clut-
terpalette must determine which clutter types to suggest
and in what order. In essence, it must answer the following
question: “If there was an additional clutter item at this
location, what would that item most likely be?” This is done
by evaluating the likelihood that a given clutter type would
appear at the identified location. The types with the highest
likelihood are presented to the user in rank order.

The Clutterpalette evaluates the likelihood of a given
clutter type conditioned on the type of the scene, the type of
the supporting object, and the clutter objects that are already
present on this supporter. Specifically, denoting Y = {Yi}
as the set of all available clutter types, the Clutterpalette
evaluates the following probability for each clutter type Yi:

P (x = Yi|w, s, {nj}), (1)

where x is the hypothetical new clutter item type, w is the
scene type (‘kitchen’, ‘bedroom’, etc.), s is the supporting
object type (‘floor’, ‘desk’, ‘wall’, etc.), and nj is the number
of clutter objects of type Yj that are already present on s,
for each type Yj for which nj > 0. Note that Yj may be
equal to Yi; for example, when the Clutterpalette considers
the probability of adding a second monitor on a desk. To
evaluate the probability (1) in terms of empirical statistics
that we can extract from the training data, we use the naive
Bayes model

P (x = Yi|w, s, {nj})

=
P (x = Yi)P (w, s, {nj}|x = Yi)

P (w, s, {nj})
(2)

∝ P (x = Yi)P (w, s, {nj}|x = Yi) (3)
= P (x = Yi)P (w|x = Yi)P (s|x = Yi)∏

j

P (nj |x = Yi). (4)

Number of Number of Number of
training images clutter types support relations

Bedroom 383 85 5843
Kitchen 225 67 4067

Living-room 221 66 3712
Office 78 53 1245

Classroom 49 62 1315

TABLE 1
Properties of the NYU Depth Dataset [21] used to train the

Clutterpalette.

Equation (2) follows from Bayes’ theorem. Equation (3)
holds because we are interested only in the relative or-
dering of the likelihoods for different clutter types Yi, and
P (w, s, {nj}) does not vary with i. Equation (4) holds by the
naive Bayes assumption. We now describe how we estimate
each of the probabilities in (4).

Prior P (x = Yi). There are several ways to approximate
the prior, the simplest being a uniform approximation. We
use a more informed empirical prior. To estimate P (x =
Yi), we enumerate all clutter instances from all classes in all
input scenes and compute the fraction that belong to class
Yi.

Conditional scene probability P (w|x = Yi). We es-
timate the conditional scene probability by enumerating
all clutter instances from class Yi in the training set and
computing the fraction that occur in scenes of type w:

P (w|x = Yi) =
P (w, x = Yi)

P (x = Yi)
. (5)

Fig. 7(a) illustrates the effect of the scene probability on the
presented suggestions.

Conditional supporter probability P (s|x = Yi). Simi-
larly, we estimate the conditional supporter probability by
enumerating all clutter instances from class Yi in the train-
ing set and computing the fraction that occur on supporters
of class s:

P (s|x = Yi) =
P (s, x = Yi)

P (x = Yi)
. (6)

Fig. 7(b) illustrates the effect of the supporter probability.
Co-occurrence probability P (nj |x = Yi). This is the

probability that there are currently at least nj instances of
class Yj on the given supporter, conditioned on x being
a new instance of class Yi. Note that Yj can equal Yi, in
which case the instance x is not included in the number ni;
thus, ni is the number of other instances from class Yi that
are already on the supporter. Note also that P (nj |x = Yi)
is interpreted as the probability that there are at least nj
instances of class Yj on the current supporter (not counting
x), because when we consider adding x to the scene, we
do not know what other clutter objects will be subsequently
added by the user. Fig. 7(c) illustrates the effect of the co-
occurrence probability.

We can evaluate P (nj |x = Yi) by enumerating all
supporters in which at least one instance of Yi appears
and computing the fraction of these supporters in which
at least nj instances of Yj appear. In the special case of
Yj = Yi, we take the fraction of the scenes in which at
least ni + 1 instances of Yi appear. Only pairs of clutter
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(a) The effect of scene probability. Different sets of suggestions are given to detail a shelf in a bedroom (top) and a shelf in a kitchen (bottom).

(b) The effect of supporter probability. Detailing three different supporters in the scene yields different supporter probabilities for the different clutter
objects. The speaker has a preference for the floor, the bottle has a preference for the desk, and the book has a preference for the shelves.

(c) The effect of co-occurrence probability. When the desk is first detailed (top), the paper and monitor are the most likely clutter types. After a monitor
is placed (bottom), the mouse and keyboard become the most likely clutter types to add.

Fig. 7. The effect of different probability terms on clutter type likelihood.
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objects within a distance threshold of 1.5 meters from each
other are considered in the co-occurrence estimation (both
at runtime and during training). This is done in order to
deal with larger supporters, such as floors, which can cover
a large area with numerous clusters of clutter.

To alleviate data fragmentation, we quantize nj to three
possible values: ‘zero’, ‘some’, and ‘many’. To determine
the quantization boundaries, in a preprocessing step we
enumerate the objects of class Yj that occurred together on
individual supporters in all scenes in the training set. Letmj

be the median of this set. We set nj to ‘zero’ if there are no
items of class Yj on the current supporter, to ‘some’ if there
are from 1 to mj such items, and to ‘many’ if the number of
such items is greater than mj .

Precomputation. In practice, the probabilities on the
right-hand side of (4) can be precomputed, by enumerating
all possible combinations of object types and scene types
available in the training data. The probabilities are stored
in matrices. For example, in the matrix of conditional scene
probabilities, each entry represents the probability of a scene
type given an object type. During the interaction stage, (4)
can be evaluated by quickly retrieving the corresponding
probabilities stored in the matrices and multiplying them
together to compute P (x = Yi|w, s, {nj}).

Note that we use uniform small-sample correction in all
empirical estimates to avoid zeroing out the probabilities.
This is done by adding a default, small observation count σ
when estimating each of the probabilities on the right-hand
side of (4). We use σ = 1 in our experiments.

7 PERFORMANCE AND EVALUATION

The Clutterpalette was implemented in C++, and our experi-
ments were run on a 3.33GHz Intel Xeon machine with 12GB
of RAM. In a preprocessing training stage, the required
empirical statistics were calculated in a total of about 9 min-
utes with an unoptimized Matlab implementation. Thanks
to the closed-form formulations, a probability of the form
(1) is computed in less than 0.1 milliseconds at runtime.
Therefore, the Clutterpalette presents its suggestions almost
instantaneously, as is demonstrated in the accompanying
video, which also includes a demonstration of the inter-
active detailing of an office scene using the suggestions
provided by the Clutterpalette.

To evaluate the utility of the Clutterpalette, we recruited
20 university students and staff, including 12 male and 8
female volunteers, to detail indoor scenes. All participants
were frequent computer users and most reported some
experience in using simple visual authoring interfaces in-
tended for the general public, such as those used in video
games or in photo editing applications.

Each participant was given a brief 5–10-minute tutorial
on the Clutterpalette interface. We then let the partici-
pants experiment freely with the interface until they felt
comfortable with its functionality. Our simple interface is
demonstrated in the accompanying video: It allows users
to add, delete, move, and rotate clutter objects. All partici-
pants reported becoming comfortable with the functionality
within 15 minutes.

Each participant was assigned one of the scene types—
bedroom, kitchen, living-room, office, or classroom. The par-
ticipant was shown several images of real-world scenes of

Fig. 9. Screenshot of the interface of a commercial interior design
software system, Autodesk R©Homestyler R©, which uses a conventional
clutter-object selection menu. To detail a scene, the user manually
chooses objects from an alphabetical list.

this type collected from Google Images. The participant was
then asked to use the Clutterpalette to create a realistic scene
of the given type, starting from an initial scene containing
only the basic furniture. The initial scenes, which we had
manually created, are shown in Fig. 8(a).

The participants used the Clutterpalette to detail the
scene to a level of realism with which they were satisfied. No
time limit was imposed; each participant decided on their
own when they were done. Modeling times ranged from 6
to 25 minutes. We assigned each participant randomly to
one of the following two settings:

In Setting 1, the Clutterpalette presented suggestions
ranked according to the model described in Section 6. The
participants could alternatively browse in a separate tab an
alphabetical list of available clutter types and choose objects
from that list. Each clutter type was accompanied with a
thumbnail to ease browsing. The participants could easily
toggle between the two tabs.

In Setting 2, the Clutterpalette presented only the alpha-
betical list. The suggestion engine described in Section 6 was
deactivated. Note that this setting is similar to conventional
clutter object selection menus used in interior design or
game level design software.1 Fig. 9 shows an example.

The participants were not informed about the different
settings. Ten scenes were produced in each of the two
settings. The number of scenes of each type was the same for
both settings. The scenes produced in Setting 1 (suggestions
& alphabetical) are shown in Fig. 8(b).

7.1 Modeling Time

In Setting 1 (suggestions & alphabetical), participants added
34.1 objects to the scene on average, whereas in Setting 2
(alphabetical only) they added 30.8 objects on average. In

1. Examples include Autodesk R©Homestyler R©, IKEA Home Planner,
Asset Preview for Unity, etc.
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Fig. 8. Modeling experiments. (a) Initial scenes given to the participants. (b) Detailed scenes produced by the participants using the Clutterpalette.
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Navigate Select Move Rotate Total
Setting 1 8.95 7.72 3.82 1.76 22.25
Setting 2 9.05 17.36 4.94 1.82 33.17

TABLE 2
Average time (in seconds) spent on different user interactions between
object additions in Setting 1 (suggestions+alphabetical) and Setting 2

(alphabetical only).

Fig. 10. Usage of the Clutterpalette suggestions (blue) versus the alpha-
betical list (red) by each user in Setting 1.

Setting 1, the average time between object addition was
22.25 seconds, whereas in Setting 2 it was 33.17 seconds.
Our suggestion engine thus resulted in a 33% improvement
in modeling speed.

Table 2 shows the average time spent on different user
interactions between object additions—navigating the scene,
selecting an object to add, translating an added object, and
rotating an added object. Users tended to select objects faster
in Setting 1 than in Setting 2. In Setting 1, users also tended
to spend slightly less time on moving objects. This can be
due to the fact that in Setting 2 some users tended to browse
through the alphabetical list to search for a relevant object
to add to the scene without caring about the location of
the object in the first place. After adding the object, the
user would then drag it to a desirable location in the scene.
Therefore more time is needed for moving the object. By
contrast, in Setting 1 when a user points to a location to add
objects, the Clutterpalette makes suggestions that already fit
within the scene context; hence, comparatively less time is
needed for moving objects.

Compared to the other user interactions, rotating objects
takes less time on average. This may be due to the fact
that the objects are already in an upright orientation, and
because many clutter objects (e.g., bowls) lack any frontal
orientation and need not be rotated.

7.2 Usage Pattern
For each of the 10 users in Setting 1 (sugges-
tions+alphabetical), Fig. 10 indicates the percentage of time
that the Clutterpalette’s suggestions were used relative to

Ranking 1 2 3 4 5 6 to 10
Usage 28.07% 21.05% 12.28% 7.02% 8.77% 22.81%

TABLE 3
Usage of the suggestions for each ranking in Setting 1.

Preferred Before
Detailing

Preferred After
Detailing No Preference

4.1% 94.6% 1.3%

TABLE 4
Independent evaluators comparing the realism of scenes before and

after detailing using the Clutterpalette.

Setting 1 Preferred Setting 2 Preferred
No Preference

47.6% 36.5% 15.9%

TABLE 5
Independent evaluators comparing the realism of scenes created in

Setting 1 and Setting 2.

the alphabetical list. Clearly, users had a strong preference
for employing the Clutterpalette’s suggestions; on average,
the suggestions were used 87% of the time, while the
alphabetical list was used only 13% of the time. Table 3
further reports the usage percentages of the suggestions in
each ranking. When users decided to add objects from the
suggestion menu, they usually (77% of the time) chose the
suggestions ranked within the top 5. Note that suggestions
ranked from 6 to 10 are still relevant to the scene context,
albeit with lower probabilities.

7.3 Scene Realism
We performed two experiments to evaluate the relative
realism of the initial scenes, the scenes produced by users
in Setting 1, and the scenes produced by users in Setting 2.

In the first experiment, our goal was to evaluate the
relative realism of the scenes before and after detailing via
the Clutterpalette. To this end, we recruited through social
media a separate group of 25 evaluators. The evaluators
were shown pairs of images. Each evaluator had to indicate
which image in each pair is the more realistic, or to indicate
no preference. The images in each pair were shown side
by side and the left-right order was randomized. Each pair
of images was of the same scene type. One image showed
a scene produced by participants in Setting 1 while the
other showed the scene in its initial condition (Fig. 8(a)).
The evaluators were not told how the scenes were produced
and in what way they were related to each other. In total, 500
pairwise comparisons were performed. Table 4 summarizes
the results of this experiment. The evaluators overwhelm-
ingly preferred the scenes detailed using the Clutterpalette.
In informal exit interviews, the evaluators who voted for
the uncluttered scenes remarked that empty classrooms are
often encountered in the real world, e.g., when class is not
in session, so they regarded empty classroom scenes to be
realistic.

In the second experiment, we evaluated the rela-
tive realism of scenes produced in Setting 1 (sugges-
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tions+alphabetical) and scenes produced in Setting 2 (alpha-
betical only). We recruited through social media a separate
group of 32 evaluators, distinct from the prior groups of
participants and evaluators. The evaluators performed ran-
domized pairwise image comparisons. One of the images
of each pair was of a scene created in Setting 1 and the
other was of a scene of the same type created in Setting 2.
The evaluators performed 1280 comparisons, summarized
in Table 5. According to a two-tailed t-test, the evaluators
had statistically significant preference for the scenes created
in Setting 1 (p-value < 0.05).

8 DISCUSSION AND FUTURE WORK

Real-world data and user-created content are becoming in-
creasingly available. Such “big data” creates good opportu-
nities for devising data-driven tools for computer graphics
applications. A key idea in our work is training the Clutter-
palette on a dataset of real-world scenes in order to address
the problem of modeling virtual indoor scenes. We expect
this idea to have broader applicability in training a variety
of intelligent visual authoring tools based on the semantics
of real-world scenes.

In the application of such data-driven approaches, an-
notation is often necessary to exploit the full potential of
the training data. The NYU Depth Dataset [21], from which
we selected 5 scene types for our experiments, provides
annotated data for 26 common indoor scene types with
substantial amounts of annotation collected by leveraging
manual human effort through the Amazon Mechanical Turk.
In principle, our model can be trained through automatic
annotation approaches. The automatic annotation of big
datasets—for example, the automatic semantic labeling of
indoor scenes [22]—is an actively researched topic. Recent
research suggests that one can simultaneously infer the fur-
niture types and scene types through a top-down/bottom-
up inference algorithm [23], [24]. Our approach can poten-
tially incorporate such an algorithm so that, rather than
being preset, the scene type of the room being detailed can
be automatically inferred from the types of objects being
added by the user.

We believe that there remain many possibilities for fur-
ther developing interactive tools for enhancing the detail of
scenes. In our current approach, we operate on a purely
semantic level. While this enables our Clutterpalette to
be trained on sparsely-annotated images that are easy to
acquire for a variety of domains, the lack of geometric
information is a major drawback. In its current level of
development, our Clutterpalette does not reason about the
careful placement or orientation of objects, thus necessi-
tating user effort that can be demanding on a large scale.
The tool also does not take into account the appearance
of objects. It would be interesting to investigate scalable
approaches to training models that can also reason about
finer-grained geometric properties, orientation properties,
and aesthetic qualities from real-world scenes.

As Table 2 shows, a considerable amount of time is usu-
ally spent navigating the scene in search of a suitable region
for detailing. A semi-automated technique for reasoning
about and suggesting good regions to detail will make an
interactive modeling tool even more convenient.

9 CONCLUSION

We introduced the Clutterpalette, an interactive tool for en-
hancing the level of detail of indoor scenes. Our experiments
demonstrate that people find scenes detailed with objects
to be substantially more realistic than their stark counter-
parts. The adaptive suggestion generation functionality of
the Clutterpalette was found to facilitate the creation of
realistic scenes and improve modeling time. We expect the
Clutterpalette to be useful in a variety of scene modeling
applications, including video game level design interfaces,
home modeling and remodeling applications, and virtual
set-dressing for use in motion pictures.
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